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ABSTRACT

We use a catalogue of stellar binaries with wide separations (up to 1 pc) identified by the Gaia satellite to constrain the presence
of extended substructure within the Milky Way galaxy. Heating of the binaries through repeated encounters with substructure
results in a characteristic distribution of binary separations, allowing constraints to be placed independent of the formation
mechanism of wide binaries. Across a wide range of subhalo density profiles, we show that subhaloes with masses 2 65 Mg
and characteristic length scales similar to the separation of these wide binaries cannot make up 100 per cent of the Galaxy’s
dark matter. Constraints weaken for subhaloes with larger length scales and are dependent on their density profiles. For such
large subhaloes, higher central densities lead to stronger constraints. Subhaloes with density profiles similar to those expected
from cold dark matter must be at least ~5000 times denser than predicted by simulation to be constrained by the wide binary

catalogue.
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1 INTRODUCTION

The particle nature of the dark matter remains an open question in
physics. Measurements of the distribution, formation, and evolution
of large-scale structure of the Universe are consistent with cold,
collisionless dark matter, interacting with itself and with baryonic
matter only through gravity, and seeded by primordial density
fluctuations. This consistency between observation and predictions
extends down to the scales of dwarf galaxies, ~ 10879 My, (Tegmark
et al. 2004). Smaller objects are expected to exist but are difficult to
directly observe, due to inefficient star formation in low-mass objects
(Bullock & Boylan-Kolchin 2017; Zavala & Frenk 2019). Deviations
from the predictions of gravity-only cold dark matter models on the
structure or distribution of low-mass dark matter haloes would be a
sign of non-trivial physics within the dark sector, physics that may
be difficult to probe any other way (Buckley & Peter 2018).

While gravitationally bound dark matter haloes below the mass
of dwarf galaxies are expected to exist both independent of and
as internal substructure to larger haloes (in the latter case forming
‘subhaloes’ within the host), the lack of tracer stars within small
haloes makes searching for such objects external to larger galaxies
extremely difficult. Instead, constraints on low-mass haloes tend to
focus on subhaloes within larger galaxies and galaxy clusters, which
can reveal their presence through gravitational effects within the
host object. Gaps observed in the Palomar 5 (Odenkirchen et al.
2001) and GD-1 (Grillmair & Dionatos 2006) stellar streams (Banik
et al. 2018, 2021b) within the Milky Way may be the result of
substructure with mass ~ 10° M, (Banik et al. 2021a). Constraints
on subhaloes with masses down to ~ 107 Mg, have been extracted
from the measured flux ratios of quadruply imaged quasars (Gilman
et al. 2018, 2019, 2020, 2021). Point-like dark matter substructure
[primordial black holes; (Carr & Kiihnel 2020; Green & Kavanagh
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2021) or massive compact halo objects - MACHOs (GRIEST 1993)]
are also constrained over a wide range of masses by measurements
of microlensing and tidal disruption (Carr et al. 2020). However, it is
important to note that the microlensing constraints assume the dark
matter is highly compact, and in general, do not apply if the dark
matter is extended over scales larger than the Einstein radius of the
microlensing event [which can be as small as O(10 au)].

In this paper, we develop a new probe of dark matter subhaloes
within the Milky Way using wide binary star systems (semimajor axes
> 1073 pc). While their component stars are on the main sequence,
such binaries evolve as isolated two-body systems (Yoo, Chaname &
Gould 2004; Longhitano 2011), unless tidal forces act on them.
Subhaloes can exert such forces by passing near a binary. During such
fly-by encounters, the subhaloes inject energy into the binary, causing
the binary’s semimajor axis to increase, and eventually resulting in
complete disruption of the bound system (Banik & van den Bosch
2021). This ‘heating’ is more effective for more widely separated
binaries, and so a population of perturbing subhaloes acting on a
population of binaries results in a rapid decrease in the number
of binaries as a function of their projected separation on the sky
(Weinberg, Shapiro & Wasserman 1987; Yoo et al. 2004; Binney &
Tremaine 2011). The role of dynamical heating in the evolution of
stellar systems was first studied using analytical methods, for the
case that heating is sourced entirely by encounters with passing stars
(Chandrasekhar 1941a, b). The effect of encounters with extended
Galactic substructures, including dark matter subhaloes, on the
Solar system’s Oort cloud was considered in Pefiarrubia (2019). In
this work, we model wide binary heating with a simulation-based
approach (Weinberg et al. 1987; Yoo et al. 2004), where we evolve
a population of synthetic binaries (representative of the data) in
time and subject them to random encounters with a population of
perturbers, as discussed in Section 3.

The heating of wide binaries has been used to place limits on
primordial black holes and other point-like perturbers within the
Milky Way (Yoo et al. 2004; Quinn et al. 2009; Monroy-Rodriguez &
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Allen 2014; Tyler, Green & Goodwin 2023). In this paper, we
expand the formalism to probe extended dark matter objects. Related
constraints on point-like perturbers have been obtained using the
heating of large stellar clusters within the Eridanus II dwarf galaxy
(Brandt 2016) and the Milky Way disc (Lacey & Ostriker 1985),
which may also potentially be used to constrain extended dark matter
objects. A constraint based on the heating of binaries within dwarf
galaxies has been proposed (Penarrubia et al. 2010, 2016), though
the necessary data are not yet available.

Our constraints are set using a sample of 9637 binaries, selected
from a catalogue by El-Badry, Rix & Heintz (2021; hereafter
E21) that was constructed using data from the Gaia early data
release 3 (eDR3; Prusti et al. 2016; Brown et al. 2021). Gaia’s
precision photometric and astrometric measurements allowed E21
to identify pairs of stars whose physical separation and relative
velocities are consistent with bound Keplerian orbits (El-Badry &
Rix 2018; Jiménez-Esteban, Solano & Rodrigo 2019; Tian et al.
2020; Hartman & Lépine 2020; El-Badry et al. 2021). Our sample
of binaries is consistent with membership in the Milky Way’s stellar
halo (Bahcall & Soneira 1980) and thick disc (Gilmore & Reid 1983).
Compared to binaries in the thin disc, the higher ages and sparsity
of baryonic sources in these regions of the Galaxy implies that their
binaries are the most affected by dark matter substructure and the
least affected by baryonic tidal perturbers. However, our constraints
on subhaloes make the conservative assumption that the observed
present-day distribution of projected binary separations is due solely
to dark matter subhalo encounters.

The paper is structured as follows: we present the sample of
binaries in Section 2. In Section 3, we model the heating of binaries
as a result of tidal forces exerted by subhaloes. In Section 4, we
develop the statistical methods used to set constraints on subhaloes.
In Section 5, we set constraints on subhaloes with a wide variety
of density profiles, including density profiles predicted by N-body
simulations of cold dark matter. We make concluding remarks in
Section 6.

2 GAIA WIDE BINARIES

Binaries with widely separated stellar components can offer strong
constraints on a population of tidal perturbers, as the tidal force grows
with the size of the system on which it acts. While a single encounter
between a binary and a subhalo may not result in a significant change
in the orbital parameters of the binary, multiple encounters over long
time-scales can slowly evolve the system to much larger separations
or disrupt it altogether.

Perturbations from baryonic sources (e.g. other stars, gas, and
dust) lead to similar orbital evolution as perturbations sourced by
dark matter substructure. While conservative limits on the population
of dark matter perturbers can be set by assuming all the evolution is
due to the dark sector, these constraints can be strengthened by using
wide binaries that orbit in the stellar halo or the thick disc, where
there are fewer baryonic sources. As the end-of-life evolution of a
star off of the main sequence can introduce significant velocity kicks
to binaries (Davis et al. 2008) — which would mimic and obscure the
effect from perturber encounters — we further restrict ourselves to
binaries whose component stars are long-lived main sequence stars.

We use for our data set the collection of widely separated binaries
identified from within the Gaia space telescope’s eDR3 (Brown et al.
2021) by E21, using techniques first presented in El-Badry & Rix
(2018). Well-measured stars from Gaia eDR3 are grouped with their
neighbours by identifying pairs whose measured relative velocities
and separations are consistent with bound Keplerian orbits. Groups
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Figure 1. Projected separation distribution of the initial binary catalogue (EI-
Badry et al. 2021; blue line) and the estimated number of contaminants (green
line), obtained by weighting each binary by min(R, 1) for contamination
probability estimate R.

with three or more stars that appear bound are filtered out. This
process results in an initial catalogue of 1 817 594 binary candidates,
shown in Fig. 1.

These binary candidates each have a projected separation s (the
distance between the component stars as projected onto the plane of
the sky) ranging from ~10~* to ~1 pc. The low-separation tail of this
distribution is set by decreasing sensitivity of the Gaia telescope at
smaller angular separation (Fabricius et al. 2021) and the difficulty
of resolving overlapping stellar components with similar G-band
magnitudes. To ensure our sample is complete at low separations,
we use an empirical fitting function that describes the probability
of Gaia resolving stellar components with angular separation 6 and
G-band magnitude difference AG = |G, — G| (El-Badry & Rix
2018),

1

fac(@) = T+ /00"

M
where, 0 characterizes the angular separation below which Gaia
is insensitive to binaries and 8 determines the rate at which Gaia’s
sensitivity drops to 0 for 8 <« 6. Following the approach of El-
Badry & Rix (2018), E21 fit the values of 6, and B for sources in
arange of AG bins. We estimate these parameters for arbitrary AG
by interpolating the fits over the binned data. Using this function, we
select binaries with fag > 0.999, which roughly corresponds to 6 >
3 arcsec.

Following Tian et al. (2020; hereafter T20), we select a subcat-
alogue of binary candidates each composed of two main sequence
stars whose tangential velocities relative to the Sun are large, v, >
85 km s~!, and whose distance from the Sun is <700 pc. Systems
with such high tangential velocities are less likely to be members
of the Milky Way’s thin disc, and are instead likely members of the
stellar halo or the thick disc (Chiba & Beers 2000; Bensby, Feltzing &
Lundstrom 2003; Venn et al. 2004; Yoachim & Dalcanton 2008) both
of which contain older stars (Reid 2005; Juri¢ et al. 2008; Kilic et al.
2017) that have had fewer tidal interactions with baryonic perturbers
as compared with stars in the thin disc.
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Figure 2. Left: Projected separation distribution of our selected sample of binaries (purple line), which we use to set constraints on subhaloes. The orange line
denotes the estimated number of contaminants, obtained by weighting each binary by its contamination probability R. Right: Distribution of measured distances

from Earth.

At large projected separation s, the rate of chance alignments
(pairs of stars in the catalogue which are identified as binaries
despite not being gravitationally bound in actuality) increases. The
catalogue of E21 provides for each binary candidate an estimate of the
probability R that the candidate is a chance alignment.! The expected
distribution of chance alignments in the initial catalogue, which can
be estimated from these R values, is shown by the green line in
Fig. 1. In Section 4, we will construct an empirical contamination
model, treating R as the true contamination probability of binary
candidates. We therefore select binaries with R < 1.

As in T19, we remove a majority of the chance alignments in
the initial catalogue by selecting binaries satisfying Ap < Aftorbit
+ 1.00 5, and o5, < 0.12 mas yr~!, where Au is the measured
magnitude of the proper motion difference between stellar compo-
nents, Afllomit 1S the maximum proper motion difference allowed if
the components followed a circular orbit of total mass 5 Mg, and
0 ay is the uncertainty in Apu.

These selections leave us with a catalogue of 9637 binary candi-
dates, which we take as our sample. The distribution of projected
separation s is shown to the left panel of Fig. 2. Though the
sample still has a low-separation tail, this is now mainly due to
the incompleteness arising from the selection cut fag > 0.999 rather
than Gaia’s sensitivity, making the incompleteness easier to model
accurately (see Section 4). Once this incompleteness is taken into
account, the separation distribution can be fit by a broken power law
breaking at ~0.1 pc.2 As we will see in Section 4, our limits will
be set by this break. The distribution of distances from Earth, d, is
shown to the right panel of Fig. 2.

As we will describe in Section 3, our limits will in part be
set by Monte Carlo simulation of the tidal effects of subhaloes
on a synthetic population of binaries whose properties match the

'We emphasize that R is itself not strictly a probability, rather it is an estimate
of a probability. Notably, in some cases, R > 1.

2 At high separations (10~2 to 1 pc), the data is nearly complete, and so the
broken power-law behaviour is most clearly seen here even without correcting
for completeness.

Gaia catalogue. We calculate the masses of the stellar components
(and thus the total mass of each binary system) by considering the
sample’s extinction-corrected colour-magnitude diagram — shown in
the left panel of Fig. 3. To correct for extinction, we first calculate
the median reddening for each binary using the BAYESTAR 2015
DUSTMAP (Green et al. 2015) implemented within the PYTHON
package DUSTMAP (Green 2018). The reddening values are converted
to extinction coefficients corresponding to magnitudes measured
in the G, Ggp, and Ggp passbands (Evans et al. 2018) using the
PYIA package (Price-Whelan 2021). Subtracting off these extinction
coefficients from their corresponding observed magnitudes gives the
intrinsic magnitudes of the stars. To infer the mass of each star from
its intrinsic magnitudes, we generate Modules for Experiments in
Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST)
(Paxton et al. 2011, 2013, 2015, 2018); Choi et al. 2016; Dotter
2016) isochrones corresponding to stars of age 10 Gyr, for a
range of metallicities [Fe/H] from —2.1 to 40.4. For each star, we
identify the isochrone closest to the star’s position in the colour-
magnitude diagram. Each of the isochrone’s colour-magnitude values
corresponds to a unique stellar mass. Each star in the sample then is
assigned the mass of the closest point within the isochrone.

Since the BAYESTAR 2015 map is only defined for declinations &
> —30°, we can only reliably estimate the masses of 6280 binaries,
which form the empirical distribution in the right panel of Fig. 3.
We use this subset of binaries to approximate the distribution for the
total mass corresponding to all 9637 binaries when we construct our
synthetic population.

3 BINARY EVOLUTION

Our goal is to place limits on subhaloes using the distribution of
projected separations of binaries in the catalogue (see Fig. 2). Each
observed binary was produced with some initial (and unknown) set
of orbital parameters, and has evolved over time to its current config-
uration in part due to the tidal perturbations from subhaloes. Given
that the initial conditions and history of random tidal encounters
are unknown, we must use simulations to determine the statistical
distribution of the final orbital parameters of the binaries for a specific
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Figure 3. Left: Colour-magnitude diagram of stars in the catalogue corrected for extinction. The stars in a binary that are brighter (fainter) than their stellar
companions are labelled as primaries (secondaries). A 10 Gyr MIST isochrone with metallicity [Fe/H] = 0.0 is shown as a green curve. Right: Binary total mass
distribution obtained by interpolating the stellar colour-magnitudes over a grid of 10 Gyr MIST isochrones.

population of subhaloes. We can then fit simultaneously for the
initial orbital distribution of the binaries and the characteristics of
the subhalo population.

We first study the effect of a single encounter on the orbit of a
binary, followed by the cumulative effect of many random encounters
on the binary’s orbit. Although the effect of a single encounter on the
binary’s orbit is deterministic, random encounters only allow us to
describe the effect of encounters as a scattering matrix describing the
probability that a binary possesses a specific orbit after it encounters
a random population of perturbers.

With this scattering matrix, we can then evolve a population
of simulated binaries from some initial distribution of projected
separations to a final distribution, assuming a set of dark matter
perturbers with specified properties. This evolved distribution can be
reweighted as the primordial binary distribution is varied, allowing
us to set robust limits in Section 4 without assuming a particular
formation mechanism for the binaries.

3.1 The effect of a single encounter on a binary

A binary star system consists of two stars in a bound Keplerian
orbit supported by their mutual gravity. The bound orbit is elliptical
and specified by semimajor axis a and eccentricity e. The physical
separation r of the stars evolves as

r=a(l —ecosy), 2)

where v is the eccentric anomaly, which is related to the dynamical
time ¢ through

P .
t=—(f —esiny). 3)
21

Here, P = a*?\/472/GM is the binary’s orbital period and M is
the binary’s total mass.

For tidal interactions between wide binaries and subhaloes within
the Milky Way, the relative speed of each encounter may be high
enough that the time-scale of the interaction is short compared to the
orbital period. In this case, we can invoke the impulse approximation
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Figure 4. Interaction geometry of perturber-binary encounters. Each pos-
sible encounter is uniquely specified by the position and orientation of
the binary relative to the perturber. The former is specified by the impact
parameter p = |p| and the angle B. The latter is specified by the angles
(0, ¢, y), where the 6 and ¢ angles describe the orientation of the binary
components during the tidal interaction, and y describes the orientation of
the binary orbital plane. The binary-perturber interaction is independent of
the angle B. See the text for more details.

(Spitzer 1958; Gnedin, Hernquist & Ostriker 1999; Binney &
Tremaine 2011; Banik & van den Bosch 2021), which treats ¥ and
the binary separation r as constant during the interaction. The result is
an instantaneous velocity kick that changes a binary’s orbit. Though
this approximation is valid only for sufficiently wide binaries, we use
it to model encounters for all binaries in our simulations, regardless
of their size. We verify that this does not significantly affect our
limits in Section 5.1.

To calculate the effect of a spherically symmetric subhalo moving
past a binary, we use the interaction geometry of Fig. 4. The
perturbing subhalo with mass M, moves with relative speed v,
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Figure 5. Structure function for perturbers with different power-law density
profiles given by equation (6).

along the z-axis, with an impact parameter p to the midpoint of the
binary (located in the xy-plane). The separation for the stars during
the encounter is r, which is a function of the orbital parameters a
and e, as well as the eccentric anomaly ¥, all of which are held
constant throughout the interaction. During the tidal encounter, the
axis connecting the binary components is oriented at angles 6 and
¢ relative to p and the z-axis. Each star therefore has a separate
impact parameter p; (i = 1, 2). In addition, an angle y specifies the
orientation of the binary’s orbital plane relative to the cross product
of the binary separation vector and p.

The velocity kicks imparted on the components of the binary are
then (Aguilar & White 1985)
a5 = =2y py 2 @

Up P
where the structure function U(p) (Gnedin 2003; Gonzélez-Morales,
Valenzuela & Aguilar 2013) is given by
mp(PE)

o0
Ulp)= / dé ———=.
1 £2\/€2 -1
Here, p(r) is the perturber’s normalized enclosed mass My, (< r)/M,,,
where M, is the total mass of the perturber. In Fig. 5, we plot the
structure functions of perturbers with radius R, and a power-law
density profile of the form:

me)z{“(é)? r=R ©)

0, r > Ry,

(6))

where py is a characteristic density set by the perturber’s total mass
M, and the power-law index is > —3. Note that as @ — —3, the
U function approaches 1 for all p. This is the same structure function
as that of a point-mass perturber.

The velocity kicks alter the binary’s internal energy per reduced

mass £ = —GM/2a and internal angular momentum per reduced
mass |£| = v/ GMa(l — €?). The change in E is
AE =22 5. Aj, )

where U = 9 — U, and AV = Av; — AU,. The change in lis
Al =F x AD, ®)

where 7 = F| — F, is the separation vector of the stars.

Constraining substructure — 5817
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Figure 6. The result of an encounter between a binary and a perturber. The
binary is made up of two 0.5 Mg, stars orbiting in the plane of the page. The
perturber has mass M, = 103 Mg, radius Ry, = 0.1pc, a uniform density
profile, and passes perpendicular to the plane of the page. The state of the
binary before the encounter is (a, e, /27 ) = (0.1 pc, 0.9, 0.64). The encounter
parameters are (p, ¢, 6, y, vp) = (0.17pc, 0, 7/2, 0, 240 km s’l).

If AE > |E|, the encounter unbinds the binary. If AE < |E|, then
the binary remains bound, evolving to a new semimajor axis ¢ = a
+ Aa with
Aa AE/|E|

a  1—AEJIE| ©)

and a new eccentricity ¢ given by

1€+ Al = /GMa'(1 — e?). (10)

Up to a minus sign, the new eccentric anomaly ¥ is determined by
setting the separation immediately before and after the interaction
equal

a(l —ecosy) =a'(1 — e cosy'). (11)

We determine the sign of ¥ by noting that it shares the same sign
as the first time-derivative of the separation r. In Fig. 6, we show an
example of the change in a single binary’s orbit due to the tidal forces
from the passage of a single extended perturber of mass 10° Mg,
radius R, = 0.1 pc, and constant density.

3.2 Many random encounters on a single binary

A binary in the Milky Way’s stellar halo/thick disc will have
encountered many tidal perturbers over its life, each with random ori-
entations, relative velocities, and impact parameters. The frequency
of the encounters depends on assumptions about the population of
perturbers — the dark matter subhaloes in our case — while the ability
of any particular interaction to modify the binary’s orbit depends on
both the perturber population (through their individual masses M,
and the structure function U), the time-dependent binary orbital state
(semimajor axis a, eccentricity e, eccentric anomaly ¥, and mass M),
as well as the distance of closest approach and relative orientation of
the tidal encounter. If we assume a uniform population of perturbers
with an isotropic velocity distribution, the effect of repeated random
encounters can be encoded in a scattering matrix (Yoo et al. 2004).
In this subsection, we will develop the scattering matrix formalism,
which we will then apply to the population of binaries using Monte
Carlo techniques in Section 3.3.

We denote the state of a binary orbitas ¢ = (a, e, V). An encounter
with a subhalo will alter an initial go to a new ¢;. For a specified
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encounter, the evolution from gy is deterministic. However, for the
encounter parameters (p, 6, ¢, y, vp) of an unspecific random
encounter, the final state can only be quantified by the probability
distribution of g; given go, f1(g1/¢o). In addition to gy, this probability
distribution depends on the perturber’s structure function and mass,
and the distributions from which the encounter parameters are drawn.

For repeated encounters, the probability distribution S, of the
orbital state after the second encounter, ¢», is the probability f; of g
evolving to some intermediate ¢; followed by the probability f> of
evolution of g, into g5 (including the change in the eccentric anomaly
¥ due to orbital evolution between the first and second encounter),
integrated over all possible intermediate states

S2(g21G0) = /dl?l F2(G21G1) f1(q11G0)- (12)

This can be continued for an arbitrary number of encounters, resulting
in the scattering matrix S, which gives the probability distribution of
the final orbital state ¢ = gy given the initial gy and N encounters
between the binary and subhaloes over a total time 7’

N-1
S(Glgo) = / II [dcz- fi+1(Gi11139| f1G11G0), (13)
i=1

where the product of integrals appears from there being N — 1
intermediate states. As seen in our definition of the scattering matrix,
our approach follows each binary over time — evolving its orbital
state in response to encounters — rather than calculating the average
response of a binary over many encounters.

In practice, we calculate the scattering matrix via Monte Carlo
simulations. For a binary with initial parameters ¢, we draw N random
encounters over a total time 7" assuming uniform spacing between
encounters 8¢ ~ T/N, allowing the binaries to evolve along their
new orbits after each encounter.> As has been previously assumed
to set limits on point-like perturbers (Yoo et al. 2004; Quinn et al.
2009; Monroy-Rodriguez & Allen 2014; Tyler et al. 2023), we set
T = 10 Gyr. This is consistent with the age of the stellar halo/thick
disc (Carroll & Ostlie 2017), so that scattering occurs from the time
that the entire binary population was assembled to the present-day.*

The subhalo population is assumed to be homogeneous, all with the
same mass M, and a specified density distribution (we will consider
various possible density profiles in Section 5). In this section, we
take perturbers with mass M, = 10° M, radius R, = 0.1 pc, and
uniform density profile [p(r) = constant] as our working example.
We assume that both the binaries and the perturbing subhaloes
are moving in the stellar halo® with isotropic Maxwell-Boltzmann

3 A more physically motivated assumption would be to simulate encounters
with a random time-step rather than uniform. However, this choice would
limit our ability to parallelize our code. We have compared results using
both random and uniform spacing between encounters and found them to be
identical.

“Implicitly, this assumes our halo/thick disc binaries were all assembled
soon after the stellar population was formed — a possibility difficult to
verify as binary formation is currently not well-understood. For example, our
assumption is compatible with the scenario that our binaries were byproducts
of dissolving clusters (Moeckel & Bate 2010; Moeckel & Clarke 2011), as
dissolution occurs over time-scales of 20-50 Myr (Kouwenhoven et al. 2010).
However, it is false if our binaries formed through the chance entrapment
of stars in tidal streams (Pefiarrubia 2021), a process expected to occur
continuously over the evolution of the Galaxy. Therefore, by forming later
than assumed, many of our observed binaries would have less time to interact
with subhaloes, leading to weaker limits.

5As the disc stars are rotationally-supported, thick disc binaries are more
likely to experience lower-velocity encounters than halo binaries. Since
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velocity distributions — each with velocity dispersion o satisfying
V20 =200 km s~ (Yoo et al. 2004; Binney & Tremaine 2011)
and truncated at the local escape velocity, vese = 533 km s~! (Piffl
et al. 2014; Zyla et al. 2020). Similar to Yoo et al. (2004), these
distributions yield a relative velocity distribution consistent with
subhaloes moving in an isothermal sphere with circular velocity v, =
220km s~! and halo binaries with velocity dispersions given by (¢,
o4, 07) = (153, 106, 101) km s~!, as measured in RR Lyrae stars
moving in the stellar halo (Muhie et al. 2021). We specify the number
density of the subhaloes as the fraction f;, of the total local dark matter
density they compose, assuming ppy = 0.0104 Mg pc™3 (Catena &
Ullio 2010; Read 2014; Zyla et al. 2020). Thus, the local number
density is specified by f, and M,,.

During the Monte Carlo simulations, we draw random encounter
parameters corresponding to the impact parameter, relative velocity,
orientation of the binary separation relative to the subhalo trajectory,
and relative orientation of the binary’s orbital plane for each en-
counter. The velocities v, are sampled from the assumed Maxwell-
Boltzmann distributions, the separation orientation angles (0, ¢)
are sampled uniformly from the solid angles €2, the orbital plane
orientation angles y are sampled uniformly from O to 27, while the
impact parameters p are sampled uniformly from the disc around the
binary’s midpoint. As we cannot sample impact parameters out to
infinity, we sample up to a maximum impact parameter py,x, defined
as the impact parameter at which the expected cumulative set of
tidal interactions — each with impact parameters >py.x — between
the subhalo and the binary can, at maximum, inject 1 per cent of the
binary’s initial binding energy over time 7 (assuming circular binary
orbits and perturber velocity perpendicular to the binary). We have
verified that our results are robust to this choice of pp,x.

To calculate the expected number of tidal encounters N, we first
note that the scattering rate dA//dt of a binary interacting with
perturbers with fixed relative velocity v, depends on the subhalo
mass M, fraction of the dark matter density composed of perturbers
Jo» and pray as

dN ODM
(e
P M,

= 2 ) 14
o ) X TT Pirax X Up (14)

The expected time between encounters is §¢ = (dN'/dt)~'. Given our
relative velocity distribution, we calculate the velocity-averaged time
between encounters, (§7), from which we can calculate the expected
number of encounters in time 7 as

N =i r 15
_mt{(&)}. (15)

In Fig. 7, we show the evolution of four example M = 1 Mg
binaries over 10 Gyr. All four began in the same initial state (ao, e,
¥o) = (0.1 pc, 0.5, 0) and interacted with a population of uniform-
density subhaloes with (M,, R,, f,) = (10* Mg, 0.1 pc, 1). As the
four binaries randomly interact with perturbers, their orbits evolve
in different ways. While individual binary-subhalo interactions can
increase or decrease the semimajor axis, the general trend can be
seen to be one of gradually widening binaries from tidal heating.
In this particular set of examples,® three out of four of the binaries
end with complete disruption (a — o0) as a final encounter leads

lower-velocity encounters lead to stronger velocity kicks, assuming thick
disc binaries have the same velocity distribution as halo binaries leads to
conservative limits.

©These binaries are chosen to highlight the various ways that binaries may
evolve under the influence of perturbative encounters, and do not necessarily
exemplify the most probable binary evolution.
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Figure 7. Semimajor axis and eccentricity evolution (solid lines) of four identical binaries under the influence of uniform-density perturbers with (M}, R;,,
fp) = (103 Mg, 0.1 pc, 1). All the binaries have mass M = 1 Mg, and are initially in the state (ag, ep, Vo) = (0.1 pc, 0.5, 0). They evolve for 10 Gyr. Disruption

times are denoted by the dashed vertical lines.
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Figure 8. Probability density of scattering to semimajor axis a assuming
ep = 0.5, Yo/2m =0, and M = 1 M, after 10 Gyr evolution with a population
of uniform-density perturbers with (Mp, Rp, fp) = (103 Mg, 0.1pc, 1) for
three initial semimajor axes: ap = 0.01, 0.05, and 0.1 pc. Each distribution
was obtained using 10° simulated binaries.

to energy injection above the binding energy, while the fourth case
experiences only negligible changes in its semimajor axis.

In Fig. 8, we show the final distribution of a given initial ey =
0.5, Yo = 0, and initial semimajor axes of a; = 0.01, 0.05, and
0.1 pc for binaries with M = 1 M. Each distribution was calculated
using 10° Monte Carlo simulations. These are the scattering matrices
for the semimajor axis a corresponding to the three initial binary
configurations, marginalized over the rest of the orbital elements.
From these results, we see that, as the semimajor axis of a binary
increases, interactions with the subhalo population can more easily
increase a or destroy the binary.’

"The latter is seen from the decreasing normalization of the probability
density.

3.3 The effect of many random encounters on multiple binaries

The scattering matrix formalism — which describes the probability
distribution of a binary’s final orbit (a, e, ¥) given a specified initial
orbit and a population of subhalo perturbers — can now be applied
to a population of binaries that themselves have a range of initial
conditions. Our ultimate goal is to compare a predicted distribution
with measurable parameters within the Gaia wide binary catalogue;
to thatend, we will construct a probability distribution of the observed
separation s between the stellar components of the binaries.

We denote the initial probability distribution of the orbital state
Go as ¢o(go). As our sample consists of binaries with different
masses, we redefine the binary state to include the binary mass M:
g — (a, e, ¥, M). Unlike the other elements of the state vector, M,
while affecting the evolution of a binary, does not change during the
evolution. With this change in notation, the present-day probability
distribution of g after experiencing encounters with a population of
subhaloes over time 7, is

¢(51)=/d§o S(q1do) $o(do)- (16)

To calculate the present-day distribution ¢, we must specify initial
distributions for the binary orbital state parameters. The initial
distribution of the semimajor axes of wide binaries is not well
understood, though it is generally taken to be a power law (Opik
1924; Wasserman & Weinberg 1987; Weinberg et al. 1987). As
a result, we will not specify this distribution a priori. Rather, we
assume it obeys a power law and marginalize our constraints over
the power-law index — in Appendix A, we consider the possibility
that the initial semimajor axis distribution is a broken power law, as
in T19.

We then calculate ¢(g) over narrow ranges of ap (assuming
uniform distributions within this range). In Section 4, when we place
observational limits on a population of subhaloes given our sample
of binaries, we can then vary the initial distribution of the semimajor
axes by reweighting each range of ay.

The initial distribution of eccentricities ey is usually taken to be
either thermal, ¢o(eg) = 2e, or superthermal, ¢(ey) o ef (where k
> 1; Jeans 1919; Weinberg et al. 1987; Geller et al. 2019; Hwang,
Ting & Zakamska 2022). The Gaia wide binaries from E21 have a
present-day distribution of eccentricities that is consistent with the

MNRAS 525, 5813-5830 (2023)
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Figure 9. Number of binaries per bin of logarithmic projected separation for binary populations that each have evolved with a different set of 0.1 pc uniform-
density perturbers for 10 Gyr (solid lines) and were initially distributed uniformly in logarithmic semimajor axis (dashed line). Left: Perturbers have various
masses M, and f,, = 1. Right: Perturbers have mass Mj, = 103 Mg and various perturber fractions Jp-

superthermal exponent « increasing from x = 1 as the semimajor
axis increases (Hwang et al. 2022), though the full behaviour of
this distribution is not well-characterized. Highly-eccentric orbits
will be more susceptible to disruption during tidal encounters with a
subhalo (due to the greater amount of time binaries spend around their
apocentric phases). Such orbits are more common in superthermal
distributions, and so, to place conservative limits, we adopt the
thermal distribution for our initial eccentricities.

The eccentric anomaly ¥ in the Gaia catalogue of wide binaries
is not directly observable. However, the initial phases of the binaries
¥ are expected to be randomly distributed in dynamical time ¢ with
uniform probability. Therefore, from equation (3), the conditional
probability of vy given ey is

1
$o(Yoleo) = o (1 — e cos o). 17
4

The initial distribution of masses M is given by the empirical mass
distribution to the right of Fig. 3.

The most directly measurable property of the wide binaries in the
Gaia catalogue is not the semimajor axis, eccentricity, or eccentric
anomaly. Rather, it is the projected separation s of the binaries at the
time of observation. It is related to the physical separation r through
the line-of-sight inclination angle of the binary i

s =rcosi, (18)

where r is related to the orbital state ¢ through equation (2). We
assume binaries are uniformly distributed in sin i, as the orientation
of the binaries is uncorrelated with their line of sight to Earth
(Wasserman & Weinberg 1987). The probability distribution for s
is then

o(s) =/dsini/dz} 8(s — rcosi) ¢(q), (19)

where § denotes the Dirac delta function.

As an example, we show in Fig. 9 the numerically-derived distri-
butions for ¢(s) assuming an initial distribution of semimajor axes
which is uniform in log-space. For our example subhalo population,
we continue using uniform-density subhaloes with radius R, =

MNRAS 525, 5813-5830 (2023)

0.1 pc. We repeat the numerical calculation for different choices
of perturber mass M, and perturber fraction f,. For these numeric
calculations, we generate binaries with semimajor axes sampled
uniformly across 175 bins logarithmically spaced between ay = 107>
and ay = 10? pc.® Each bin contains 10* binaries. After evolving the
binaries with subhaloes for 10 Gyr, the initially flat distribution in s
develops a characteristic break at large separations, due to the energy
injection from the perturbers. It is this deficit of the widest binaries
that will allow us to set limits on the dark matter substructure in
Section 4.

Though the distribution of s has been numerically calculated from
samples drawn from a flat distribution of ay in log-space (¢o(ap) x
ay 1, the behaviour of ¢(s) under different assumptions of ¢g(ap) can
be straightforwardly calculated by reweighting the binaries based on
their initial semimajor axis using equation (16). In Fig. 10, we show
the initial and final distribution of s for three different power-law
distributions of initial semimajor axis: ¢o(ag|r) o a} for A =0, —1,
and —2. These results indicate that the asymptotic behaviour of the
power law past the break induced by the perturbers is independent of
the initial semimajor axis distribution. For the remainder of this work,
we will assume the initial probability distribution for the semimajor
axis is drawn from a power law with index A, with the value of A fit
to data, as we will describe in the next section.

4 STATISTICAL METHODS

In the previous section, we determined how binary orbits evolve
when they are subject to random encounters with subhaloes and
numerically calculated a scattering matrix that can be integrated over
the initial distribution of binaries to give the present-day probability
distribution of binary projected separations. We must next compare
our calculation of the predicted separation distribution with the
observed separation distribution of our sample binaries in order to

8This range is larger than the 10~* — 10° pc range of the wide binary
catalogue, to allow for binaries migrating into the region of interest as a result
of tidal encounters.
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Figure 10. Dashed lines: Initial projected separation distribution of three
populations of binaries with different initial semimajor axis distributions,
each obeying different power laws and normalized to 10° binaries. Solid lines:
Projected separation distributions of the various populations of binaries after
they experience encounters with uniform-density perturbers with (Mp, Rp,
f») = (10> Mg, 0.1 pc, 1) for 10 Gyr.

set limits on the population of subhaloes. In this section, we will
demonstrate our approach using a single type of subhalo population
with uniform density distributions. We will consider other models of
dark matter perturbers in Section 5.

Previously, we have calculated the probability distribution for the
binary projected separation s, given tidal interactions over time T
originating from a population of subhaloes composing a fraction f,
of the dark matter density and the power law of the initial semimajor
axis distribution A. To make these dependencies explicit, we write
the present-day distribution as ¢(s) — ¢(s|A, fp, Z ), where we have
introduced a parameter vector E encoding all other information about
the population of subhaloes, e.g. the perturbers’ masses, radii, and
density profiles.

As stated previously, we wish to set limits on the subhalo abun-
dance f, marginalized over the possible semimajor axis distributions
A while keeping the other perturber properties Z fixed. However,
the power-law distribution does not account for Gaia’s sensitivity
to binaries at different separations or the selection criteria we made
in Section 2. For our sample to be complete at low separations, we
required fag > 0.999. This amounts to setting an angular separation
cutoff 6, depending on the difference in the binary component
magnitudes AG. Including this selection effect, the probability of
detecting and selecting a binary located a distance d from Earth with
projected separation s is (El-Badry & Rix 2018)

DA, £, 0) O(s/d — Or6)
Jds" ¢(s'IA, fo. ) O(s'/d — OaG)

where © is the Heaviside theta function.

Moreover, as discussed in Section 2, not every pair of stars in
the binary catalogue is necessarily a true binary. To account for
the presence of chance alignments in our sample, we model their
separation distribution with a power law, ¢.(s|A.) o s* (we consider
other fitting functions in Appendix B), and subject them to the same
selection effects as the binaries. The probability of detecting and
selecting a chance alignment located a distance d from Earth with

Po(sld, AG: A, f,, 0) = (20)
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projected separation s is
(s|Ae) O(s/d — 6
pelsld, AG: ) = 2011 O/~ Oac) 1)

Jds’ de(s'1xe) O(s'/d — Oag)”

Using the above two distributions, the probability of having either a
binary or a chance alignment in our catalogue is

p(sld, AG, Rs A, ke, fr, £) =
(1 = R) po(sld, AG; &, fp, ©) + R pe(sld, AG; Ao,

where R denotes the probability that a selected pair of stars is a
chance alignment. As suggested by our notation, for this we use the
contamination probability estimate discussed in Section 2.

With the probability distribution given by equation (22), we can
now calculate a likelihood function £ of our Gaia eDR3 wide binary
sample, as a function of the perturber fraction f, corresponding
to a subhalo population described by the parameters Z , the initial
semimajor axis distribution ¢o(ap|r) o a(’)‘, and the population of
chance alignments, ¢.(s|A.) o s*. Assuming the binaries do not
affect each other’s evolution or detectability, the likelihood function
is
L =[] psildi, AGi, Riz 1. hes £, 0. (23)

1

where the index i labels the binaries within the sample.

From this, we use Bayes’ Theorem to infer the posterior dis-
tribution for the model parameters {A, Ac, fp}, given the data
{si, di, AG;, Ri};. We set a limit on the fraction f,, of the dark matter
composed of subhaloes specified by the fixed set of parameters Z .
In practice, we sample the posterior distribution using the EMCEE
code (Foreman-Mackey et al. 2013), assuming uniform priors for
{X, ¢, logf, }, and marginalize over the power-law indices A and A
to obtain the probability distribution for the perturber fraction f,. In
this way, we report our limit as a 95 per cent probability bound of
the perturber fraction f,.

A sample of the posterior distribution corresponding to a popu-
lation of uniform-density subhaloes with mass M, = 10° My and
radius R, = 0.1 pc is shown in Fig. 11. We find the perturber fraction
is constrained by the data to be f, < 0.28 at the 95 percent level,
indicated by the solid vertical line at the right end of the distribution
for f,. In Fig. 12, we show the initial power-law distribution of
binary separation as well as the evolved final distribution, overlaid
on the data. The deviation at low separations is mainly due to the
selection cut fag > 0.999. We note that our best-fit for the unbroken
power-law index A is consistent with the results of T19, and the
chance-alignment power-law index X, is roughly independent of the
perturber population.

5 RESULTS

In this section, we now set limits on subhaloes with different
total mass, radius, and density distributions. First, we continue
analysing populations of uniform-density perturbers to show how
our constraints depend on the perturber mass and radius. Next,
we vary the density profile along with the mass and radius by
considering perturbers with power-law density profiles. Finally, we
set limits on a population of Milky Way-like subhaloes whose
density distributions follow a Navarro—Frenk—White (NFW) density
distribution (Navarro, Frenk & White 1996), as predicted by N
body simulations. Throughout this section, we set constraints using
scattering matrices calculated by simulating 5000 binaries per bin of
initial semimajor axis.

MNRAS 525, 5813-5830 (2023)
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Figure 11. Sampled posterior distribution of the model parameters {2, Ac,
fp} for uniform-density perturbers with (M, Rp) = (10> Mg, 0.1pc). The
vertical dashed lines in the 1D histograms denote 5 per cent, 50 per cent, and
95 per cent quantiles. The vertical red line corresponds to our limit on the
perturber fraction. The inner and outer boundaries of the 2D contours denote
68 per cent and 95 per cent error contours.
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Figure 12. Fit of the model binary population from Fig. 11 to the sample
binaries. The expected probability density of observed binaries is given as a
histogram produced by weighting each binary candidate with the probability
that it is a true binary: 1 — R. The best-fitting initial and evolved separation
distributions are denoted as solid lines. The bands around those lines denote
95 per cent uncertainties around the best-fitting model parameters.

5.1 Limits on uniform-density perturbers

To analyse how the constraints on our uniform-density 0.1 pc
perturbers depend on the perturber mass M;,, we run our Monte Carlo
technique and statistical analysis for several perturber populations,
with masses between 10 Mg and 108 M. The results are shown in
Fig. 13. We find that perturbers with M;, 2 95Mg, cannot make up
100 per cent of the local dark matter density at the 95 per cent level.

MNRAS 525, 5813-5830 (2023)
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Figure 13. Limits on populations of uniform-density perturbers with differ-
ent masses M, and R, = 0.1 pc. The line and shaded area denote the 95
per cent-excluded region.

Above this mass, f, can be at most ~ 25 per cent of the local dark
matter density.

For perturber masses M, > 10® M, the impulse approximation
begins to fail, using the criteria described in Yoo et al. (2004). For
such massive perturbers, the crossing time for the closest expected
encounter becomes longer than the binary period (for binaries with s
2 0.01 pc). Once the impulse approximation is no longer valid, the
injection of energy is on average less than that calculated assuming
the approximation.® As a result, if the impulse approximation is
extended beyond its range of validity to high masses, the limits set
will be overly strong. We therefore do no show limits for perturbers
above 10° M.

We next consider the limits on uniform-density perturbers as both
the mass M}, and radius R;, are varied. The results are shown in Fig. 14.
In the left panel, we show the maximum value of f, allowed by the
data as a function of M, for various choices of R;. In the middle
panel, we show the limits as a function of R, for different values
of M. As can be seen, as the radius of the perturber increases, the
perturber mass at which f, = 1 is ruled out increases as well; at high
mass or small radius, the maximum perturber fraction asymptotes
to f, ~ 0.25. The right panel of Fig. 14 shows the contours of the
maximum f, as a function of M, and R,,. For radii below ~0.1 pc,
the limits on f, are independent of R,,. For R, 2 0.1 pc, the contours
of constant f;, behave approximately as M}, o Rg.

5.2 Limits on power-law perturbers

Beyond mass and size, we expect our limits to depend on the
perturber density profile. To quantify this dependence, we set limits
on perturbers with various power-law density profiles, p(r; o) o< r*,
truncated at radius R, and normalized to mass M,, see equation (6).

9The weaker effect results from encounters becoming increasingly adiabatic
as a binary’s orbital period becomes larger than the encounter crossing time.
The presence of adiabatic invariants then constrain the binary to respond to
encounters in a way that leaves its energy and angular momentum unchanged
(Gnedin et al. 1999; Pefarrubia 2019; Banik & van den Bosch 2021).

£20Z Jaquieldag Gz uo Jesn salelqi Alsianiun siebiny Aq 876752/ 18S//SZS/a101e/SBIUW/WOo dNo"dIWapeoe//:sdy Wol) PapEojumMo(]



Constraining substructure 5823
1.0 1.0 10°
0.8 0.8 10!
3 “3 = f
0.4 0.4 p
] g 10! — 1.00
0.2 R, /pc B 0.2 M,/ Mg — 0.75
— 1072 10° — 107 103 1072 0.50
0.0{ — 107! 10! 0.0 — 10! 102 0.30
- . 1073 " =
10° 10? 10* 106 108 1072 107t 10° 10! 102 10! 10° 10° 10°
M, (Ms) Ry, (pe) M, (M)

Figure 14. Constraints on general uniform-density perturbers. Left: Limits on f;, over a range of masses M), for discrete values of perturber radius R,,. Middle:
Limits on f, over a range of radii R, for discrete values of perturber mass Mp,. Right: Contours of f, limits in (M, Ry)-space.

The results are shown in Fig. 15. These plots show that constraints
are generally stronger for perturbers with higher central densities.
The strengthening of the limits is most significant when the power-
law index o < —2. This is most clearly seen by directly comparing
the contour corresponding to f, = 1 as density is varied, as is shown in
Fig. 16. Recall that as @« — —3, the energy injection approaches that
of a point-mass perturber, and so the dependence on R, disappears.

5.3 Limits on NFW perturbers

Having considered dark matter perturbers that follow a simple power-
law density distribution, we apply our formalism to constrain dark
matter subhaloes that follow more complicated density distributions.
We consider subhaloes having an NFW density profile. While other
dark matter density distributions (e.g. Einasto) also exist in the
literature, the NFW profile is observed to provide good fits to
dark matter distributions across a wide range of halo masses both
observationally (Schulz, Mandelbaum & Padmanabhan 2010; Okabe
et al. 2013; Newman, Ellis & Treu 2015) and in simulation (Springel
et al. 2008).

The NFW distribution transitions from an @ = —1 power law for
radii below the scale radius R, to @ = —3 for larger radii, before
being truncated at the virial radius Ry:

PNEw (75 Rs, Ry) = {po (R%)_I (1 + i>_27 r= R (24)
0, r > Ry,

where the density parameter pg sets the virial mass My. In this way,
the NFW profile has three free parameters: My, R, and Ry.

Following the typical notation, we define the virial radius Ry
in terms of Ry and a dimensionless concentration parameter c:
Ry = cR;. For subhaloes within a Milky Way-like host galaxy,
Moliné et al. (2017) used N-body simulations to derive the following
concentration—mass relationship:

3 M i
1%
1+Z {ailog (7108 P M@)} } X

i=l1
[1 + b ]Og (xsub)] ) (25)

where ¢y = 19.9, a = (—0.195, 0.089, 0.089), b = —0.54, and the
parameter Xy, is the ratio between the distance of the subhalo from
the centre of its host halo and the host halo’s virial radius. We take
the former to be the Galactocentric distance to the Sun Ry ~ 8 kpc

¢ (My, xap) = co

(Abuter et al. 2019; Zyla et al. 2020) and the latter to be the Milky
Way’s virial radius RYY ~ 290 kpc (Deason et al. 2020). Under these
assumptions, the concentration ¢ of NFW perturbers varies between
~80 — 120 for subhaloes with masses < 108 M. We therefore take
¢ = 100 for our NFW perturbers, allowing us to quantify their density
profiles with two numbers: My and Ry.

We note several important caveats in the relationship given by
equation (25). First, it was derived for subhaloes with Ry 2 10~ pc,
which is larger than the lower limit of perturber radii we consider.
Second, the smallest simulated subhaloes were evolved only to
redshift z = 32. We will assume the concentration—mass relation does
not change significantly up to z = 0. Third, we expect subhaloes to
experience tidal effects that affect their masses and density profiles.
As anotable example, this relation does not account for the presence
of baryonic matter. Overall, the properties of dark matter halos below
~ 10% M, are as yet not observationally constrained and so our limits
are subject to the uncertainties associated with the concentration—
mass relationship in equation (25).

With these caveats stated, in Fig. 17, we show the upper limits (as
set by the Gaia wide binary catalogue) on f,, as a function of My and
Ry, assuming ¢ = 100.

While we have treated the virial mass and the virial radius of the
NFW perturbers as free parameters, the evolution of collisionless cold
dark matter is expected to provide an additional relationship between
the two parameters (though the precise form of this relationship
depends on the environment in which they evolved). For cold dark
matter evolving under the influence of gravity only, the virial radius
can be set as the radius at which the dark matter density of the halo
is a factor A = 200 greater than the critical density of the Universe
e =277 x 1077 i* Mg pc™ (Zyla et al. 2020). Combined with
our assumption of ¢ = 100 for low-mass subhaloes, this allows us to
specify an NFW subhalo with a single parameter, Ry . The ‘canonical’
virial mass of an NFW profile with virial radius Ry we denote as M5;:

. 4 R%,
M = 3 PA. (26)

As we will show, the subhaloes predicted by equations (25) and
(26) have too little mass (for a given Ry) to be constrained by the
wide binary data. Defining the NFW virial mass as My = x My, we
show in Fig. 18 the upper limits on x as a function of Ry (or M5).
These limits show that subhaloes must be at least 5000 times more
massive than the prediction of NFW profiles from cold dark matter
simulations to be constrained.

MNRAS 525, 5813-5830 (2023)
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Figure 15. Limits on perturbers with power-law density profiles. As in Fig. 14 the columns correspond to limits on f, versus M, for discrete values of R,
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power-law indices «.

6 CONCLUSIONS

We have constrained dark matter subhaloes in a model-independent
way using a catalogue of Gaia eDR3 wide binary candidates. In
general, we find that subhaloes with length scales <0.1pc and
masses 2 65Mg cannot make up 100 percent of the dark matter
(Fig. 16). The limit in the subhalo abundance drops from 100 per cent
of the local dark matter density to around 25 percent as the mass
increases to ~1000 Mg (Fig. 15). For scales 2 0.1 pc, we found
constraints to be dependent on the subhalo density profile such that
higher central densities are given stronger constraints (Fig. 16).

In addition, we calculated how much subhaloes with an NFW
profile can deviate from the predictions of cold dark matter modelling
without being constrained by our binary sample (Fig. 18). Across
all length scales probed by our binaries, constraints apply only to
subhaloes that are at least 5000 times more massive than those
predicted by simulation. While not constraining collisionless cold
dark matter scenarios, additional interactions within the dark sector
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can lead to significantly denser substructure (Buckley & DiFranzo
2018; Choquette, Cline & Cornell 2019; Bai, Long & Lu 2020;
Fernandez et al. 2022). As this work sets the first limits on subhaloes
at O(1 pe) length scales, wide binaries can be used to constrain new
regions of parameter space for dark matter models.

We have focused on constraining populations of subhaloes each
with a monochromatic mass spectrum. To set constraints on sub-
haloes with extended (time-independent) mass functions, it is pos-
sible to modify the scattering formalism to include specific choices
for the mass function. However, the approach of Carr et al. (2017) to
extract limits on extended mass functions of primordial black holes
from monochromatic constraints can be applied to our results as well.

Given our constraints f,(Mp) < fnax (M) on a monochromatic
perturber mass function, one can estimate constraints on subhaloes
with the mass function ¥ (M) oc M, dn/dM,,, normalized so that the
fraction of dark matter existing as the subhaloes is given by f;, =
JdM, ¥ (M,). The constraint for the extended subhalo population
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Figure 17. Limits on NFW subhaloes in the Milky Way. Here, the virial
mass My and the virial radius Ry are allowed to vary, while the concentration
parameter is fixed to ¢ = 100.

can be estimated from the following inequality:

V(M)
/ Wiy = @D

Limits on extended dark matter substructure may be improved in
the future in a number of ways:

(i) Our statistical modelling allows wide freedom for the initial
distribution of wide binaries. A better understanding of the binary
production mechanism may restrict the viable parameter space,
leading to tighter constraints on the characteristic break in the binary
separation distribution due to tidal interactions with dark matter
subhaloes.

(ii) A sample of binary candidates with fewer chance alignments
would reduce the uncertainty of our constraints from marginalizing
over the contamination model parameters.
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Figure 18. Limits on modified cold dark matter NFW subhaloes in the Milky
Way. Here, the subhalo mass My is a rescaling of its canonical virial mass:
My = x My, while the rest of the NFW parameters are held fixed to their
canonical values.

(iii) Our constraints were derived assuming a subhalo density set
in terms of the local dark matter density around the Sun. Binary
kinematic data allows us to better account for changes in each
binary’s local dark matter density as they orbit about the Galaxy
(Quinn et al. 2009; Monroy-Rodriguez & Allen 2014; Tyler et al.
2023).!%Relying on Gaia data alone, we are mainly limited by
unknown radial velocities. This may improve with Gaia DR4 (Evans
et al. 2022), or with cross-matched data from other surveys (Leclerc
et al. 2022).

(iv) Our constraints on NFW subhaloes depend on the validity
of using the concentration—mass relation given by equation (25) to
describe subhaloes existing within a Milky Way-like host halo. As the
caveats to this adoption have been noted, future work should either
more carefully assess the validity of this assumption or apply an
updated concentration—mass relation. Such a relation should account
for small-scale subhalo evolution up to the present day and the various
tidal effects that subhaloes experience throughout their evolution,
such as those arising from the presence of baryonic matter.

(v) A larger sample of binaries will increase the statistical power
of our method. The number of Milky Way halo/thick disc binaries
available can be increased by either using larger comprehensive
data sets (e.g. Gaia DR3) or by cross-matching binaries existing
in various data sets (LAMOST, APOGEE, RAVE, GALAH, GDS).
Alternatively, it may be possible to survey wide binaries in ultrafaint
dwarf galaxies (e.g. Draco II Wilson 1955) using high-power space

10Varying local dark matter densities have previously been taken into account
by rescaling ppm to the mean time-averaged dark matter density experienced
by a subsample of binaries with known velocities (Monroy-Rodriguez &
Allen 2014; Tyler et al. 2023). Out of our wide binary catalogue, the velocities
of 250 binary candidates have been measured. Following the technique of
Tyler et al. (2023), we found the time-averaged local dark matter density
(opm) to have a mean of 9.7 x 1073 Mg pc> and a standard deviation of
2.9 x 1073 Mg /pc3.
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telescopes, such as the JWST (Gardner et al. 2006), which opens the
possibility of setting limits on substructure outside of the Milky Way
(Walker, Kervick & Penarrubia 2021).
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APPENDIX A: MODELLING THE INITIAL
SEMIMAJOR AXIS DISTRIBUTION

Though the initial semimajor axis distribution of wide binaries is
generally taken to obey a power law, this assumption is in part
motivated by observation of the present-day distribution (Lépine &
Bongiorno 2007; Andrews, Chanamé & Agiieros 2017; Tian et al.
2020). Itis possible that the initial distribution deviates from a simple
power law for reasons that are independent of perturber interactions,
due to some unidentified production mechanism or post-production
assembly. T19 proposes that the initial semimajor axis distribution
of wide binaries might instead be drawn from a broken power law.

Constraining substructure — 5827

To address this, we model the initial distribution of binary
semimajor axes ao using a smoothly broken power-law distribution,
which takes the following form

ao Al 1 ao 1/A (a—=A1A
$olag) (*) S [T+ (*) (AD)
dy 2 ap

where a, sets the scale at which the power-law transitions from
index A; to A, and A specifies the speed of the transition. As we
marginalize over these parameters, we restrict ourselves to formation
mechanisms that lead to a decrease in the number of binaries with
respect to increasing ag, s0O Ay, Ay <O0.

Our updated constraints corresponding to this choice of initial
semimajor axis distribution are given in Figs A1-A2. As we see, our
constraints are weaker, mainly due to the data preferring a model
where A, ~ 0 and a, ~ 0.1 pc. That is, the preferred fit in this case is
for the widest binary assembly to be independent of semimajor axis.
The observed decrease in the binary population at large s then would
be primarily due to encounters with the dark matter perturbers.

Though these results suggest that our constraints would be
significantly weaker under the assumption of a broken power-law
production mechanism, it is plausible that the assembly process for
the widest binaries should be less efficient as the semimajor axis
increases (restricting the possible values of A, and A;). For instance,
it has been proposed that wide binaries with separations 2 0.1 pc
were most likely formed as a random alignment of two stars with
low relative velocities in an expanding cluster (Kouwenhoven et al.
2010; Moeckel & Bate 2010; Moeckel & Clarke 2011; Griffiths
2018; Tyler et al. 2023). This ‘soft capture’ occurs on time-scales of
20-50 Myr for each cluster (Kouwenhoven et al. 2010), much shorter
than the 10 Gyr evolution time within the halo and thick disc that
this paper is concerned with. The distributions of inter-star distances
within the cluster result in a falling distribution of binary semimajor
axes under this mechanism.

As argued in T19, wide binaries produced from a single cluster
would have an initial semimajor axis distribution given by the
power law ¢y(ap) o a, 3 2, breaking at a characteristic length scale
(corresponding to the cluster’s tidal radius) to a steeper decline of
wide binaries. For binaries formed within many different clusters,
the overall distribution of semimajor axes would be the combination
of various a, 2 power laws, each having breaks at different scales.
This results in a distribution of binary semimajor axes that behaves as
ay 32 for small ag and eventually breaks to a more rapidly decreasing
distribution at large ap in a way that depends on properties of
the cluster population. Approximating the large-a, distribution as
a power law, this implies the index A, at large aj is strictly less than
the index at small ag, A;.

Our results requiring that A, < A; are shown in Figs A1-A2.
In this case, the constraints are nearly identical to those set using
the single power law assumption for the initial semimajor axis
distribution. Thus, our constraints are robust under the assumption
that the initial distribution of wide binaries is decreasing, with the
number of binaries at high separations decreasing as fast as or faster
than that at low separations.
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Figure Al. Sampled posterior distributions of the model parameters {11, A2, ap, A, A, fp} for uniform-density perturbers with (M}, Rp) = 103 Mg, 0.1 pc)
and binaries whose initial semimajor axis distribution obeys the smoothly broken power law given by equation (A1). The orange and blue lines are the result of
marginalizing over power-law indices satisfying A1, A» <0 and X < A; < 0, respectively. The inner and outer boundaries of the 2D contours denote 68 per cent

and 95 per cent error contours.
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Figure A2. Limits on populations of uniform-density perturbers with differ-
ent masses M}, and R, = 0.1 pc for models in which binaries have an initial
semimajor axis distribution given either by a single power law, a smoothly
broken power law satisfying A1, A2 < 0, or a smoothly broken power law
satisfying Ao < A; <0.

APPENDIX B: CHANCE-ALIGNMENT
MODELLING

We have set constraints on subhaloes assuming that the distribution
of chance alignments (subject to the various quality cuts used to
construct the catalogue) follows a power law as a function of
projected separation s. In this Appendix, we show that our results
agree with constraints that are set assuming two other functional
forms for the chance-alignment separation distribution.

First, we set constraints without taking the population of chance
alignments into account. This corresponds to setting the chance-
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Figure B1. Limits on populations of uniform-density perturbers with differ-
ent masses M}, and R, = 0.1 pc for models in which the projected separation
distribution of chance alignments is either a single power law, identically
zero, or a Gaussian.
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Figure B2. Sampled posterior distribution of the model parameters {A,
fp} for uniform-density perturbers with (M,, Rp) = (103> Mg, 0.1pc) and
no chance-alignment model (¢. = 0). The vertical dashed lines in the 1D
histograms denote 5 per cent, 50 per cent, and 95 per cent quantiles. The inner
and outer boundaries of the 2D contours denote 68 per cent and 95 per cent
error contours.
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Figure B3. Sampled posterior distribution of the model parameters {2, fic,
o¢, fp} for uniform-density perturbers with (Mp, R,) = (10 Mg, 0.1 pc) and
a chance-alignment separation distribution given by a Gaussian, see equation
(B1). The vertical dashed lines in the 1D histograms denote 5 per cent,
50 percent, and 95 percent quantiles. The inner and outer boundaries of
the 2D contours denote 68 per cent and 95 per cent error contours.

alignment distribution ¢, = 0 in equation (22). As we see from
Fig. B1, minimizing the effect of chance alignments in this way does
not significantly alter our constraints. The posterior corresponding
to 0.1 pc uniform-density perturbers with M, = 10* M, is given in
Fig. B2.
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Next, we consider a Gaussian chance-alignment distribution:

1 1 /s — e 2
———exp |5 : (B1)
1/ 210, L2 2 Oc
where p. and o denote the mean and standard deviation, respec-
tively. The corresponding limits are given in Fig. B1; they are

Pe(s) =

MNRAS 525, 5813-5830 (2023)

consistent with limits from the default single power law and as well
as the no-chance-alignment limits. The posterior corresponding to
0.1 pc uniform-density perturbers with M, = 10* M, is given in
Fig. B3.
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