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A B S T R A C T 

We use a catalogue of stellar binaries with wide separations (up to 1 pc) identified by the Gaia satellite to constrain the presence 
of extended substructure within the Milky Way galaxy. Heating of the binaries through repeated encounters with substructure 
results in a characteristic distribution of binary separations, allowing constraints to be placed independent of the formation 

mechanism of wide binaries. Across a wide range of subhalo density profiles, we show that subhaloes with masses � 65 M �
and characteristic length scales similar to the separation of these wide binaries cannot make up 100 per cent of the Galaxy’s 
dark matter. Constraints weaken for subhaloes with larger length scales and are dependent on their density profiles. For such 

large subhaloes, higher central densities lead to stronger constraints. Subhaloes with density profiles similar to those expected 

from cold dark matter must be at least ∼5000 times denser than predicted by simulation to be constrained by the wide binary 

catalogue. 

K ey words: methods: observ ational – statistical – binaries – Galaxy: halo – dark matter – structure. 
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 I N T RO D U C T I O N  

he particle nature of the dark matter remains an open question in
hysics. Measurements of the distribution, formation, and evolution 
f large-scale structure of the Universe are consistent with cold, 
ollisionless dark matter, interacting with itself and with baryonic 
atter only through gravity, and seeded by primordial density 
uctuations. This consistency between observation and predictions 
xtends down to the scales of dwarf galaxies, ∼ 10 8 −9 M � (Tegmark 
t al. 2004 ). Smaller objects are e xpected to e xist but are difficult to
irectly observe, due to inefficient star formation in low-mass objects 
Bullock & Boylan-Kolchin 2017 ; Zavala & Frenk 2019 ). Deviations 
rom the predictions of gravity-only cold dark matter models on the 
tructure or distribution of low-mass dark matter haloes would be a 
ign of non-trivial physics within the dark sector, physics that may 
e difficult to probe any other way (Buckley & Peter 2018 ). 
While gravitationally bound dark matter haloes below the mass 

f dwarf galaxies are expected to exist both independent of and 
s internal substructure to larger haloes (in the latter case forming 
subhaloes’ within the host), the lack of tracer stars within small
aloes makes searching for such objects external to larger galaxies 
xtremely difficult. Instead, constraints on low-mass haloes tend to 
ocus on subhaloes within larger galaxies and galaxy clusters, which 
an reveal their presence through gravitational effects within the 
ost object. Gaps observed in the Palomar 5 (Odenkirchen et al. 
001 ) and GD-1 (Grillmair & Dionatos 2006 ) stellar streams (Banik
t al. 2018 , 2021b ) within the Milky Way may be the result of
ubstructure with mass ∼ 10 6 M � (Banik et al. 2021a ). Constraints
n subhaloes with masses down to ∼ 10 7 M � have been extracted 
rom the measured flux ratios of quadruply imaged quasars (Gilman 
t al. 2018 , 2019 , 2020 , 2021 ). Point-like dark matter substructure
primordial black holes; (Carr & K ̈uhnel 2020 ; Green & Kavanagh
 E-mail: mbuckley@physics.rutgers.edu 

 

p
M  

2023 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
021 ) or massive compact halo objects – MACHOs (GRIEST 1993 )]
re also constrained o v er a wide range of masses by measurements
f microlensing and tidal disruption (Carr et al. 2020 ). Ho we ver, it is
mportant to note that the microlensing constraints assume the dark 
atter is highly compact, and in general, do not apply if the dark
atter is extended over scales larger than the Einstein radius of the
icrolensing event [which can be as small as O (10 au )]. 
In this paper, we develop a new probe of dark matter subhaloes

ithin the Milky Way using wide binary star systems (semimajor axes
 10 −3 pc). While their component stars are on the main sequence,

uch binaries evolve as isolated two-body systems (Yoo, Chaname & 

ould 2004 ; Longhitano 2011 ), unless tidal forces act on them.
ubhaloes can e x ert such forces by passing near a binary. During such
y-by encounters, the subhaloes inject energy into the binary, causing 

he binary’s semimajor axis to increase, and eventually resulting in 
omplete disruption of the bound system (Banik & van den Bosch
021 ). This ‘heating’ is more ef fecti ve for more widely separated
inaries, and so a population of perturbing subhaloes acting on a
opulation of binaries results in a rapid decrease in the number
f binaries as a function of their projected separation on the sky
Weinberg, Shapiro & Wasserman 1987 ; Yoo et al. 2004 ; Binney &
remaine 2011 ). The role of dynamical heating in the evolution of
tellar systems was first studied using analytical methods, for the 
ase that heating is sourced entirely by encounters with passing stars
Chandrasekhar 1941a , b ). The effect of encounters with extended
alactic substructures, including dark matter subhaloes, on the 
olar system’s Oort cloud was considered in Pe ̃ narrubia ( 2019 ). In

his work, we model wide binary heating with a simulation-based 
pproach (Weinberg et al. 1987 ; Yoo et al. 2004 ), where we evolve
 population of synthetic binaries (representative of the data) in 
ime and subject them to random encounters with a population of
erturbers, as discussed in Section 3 . 
The heating of wide binaries has been used to place limits on

rimordial black holes and other point-like perturbers within the 
ilky Way (Yoo et al. 2004 ; Quinn et al. 2009 ; Monroy-Rodr ́ıguez &

http://orcid.org/0000-0003-1109-3460
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Figure 1. Projected separation distribution of the initial binary catalogue (El- 
Badry et al. 2021; blue line) and the estimated number of contaminants (green 
line), obtained by weighting each binary by min ( R , 1) for contamination 
probability estimate R . 
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llen 2014 ; Tyler, Green & Goodwin 2023 ). In this paper, we
xpand the formalism to probe extended dark matter objects. Related
onstraints on point-like perturbers have been obtained using the
eating of large stellar clusters within the Eridanus II dwarf galaxy
Brandt 2016 ) and the Milky Way disc (Lacey & Ostriker 1985 ),
hich may also potentially be used to constrain extended dark matter
bjects. A constraint based on the heating of binaries within dwarf
alaxies has been proposed (Penarrubia et al. 2010, 2016 ), though
he necessary data are not yet available. 

Our constraints are set using a sample of 9637 binaries, selected
rom a catalogue by El-Badry, Rix & Heintz ( 2021 ; hereafter
21 ) that was constructed using data from the Gaia early data

elease 3 (eDR3; Prusti et al. 2016 ; Brown et al. 2021 ). Gaia ’s
recision photometric and astrometric measurements allowed E21
o identify pairs of stars whose physical separation and relative
elocities are consistent with bound Keplerian orbits (El-Badry &
ix 2018 ; Jim ́enez-Esteban, Solano & Rodrigo 2019 ; Tian et al.
020 ; Hartman & L ́epine 2020 ; El-Badry et al. 2021 ). Our sample
f binaries is consistent with membership in the Milky Way’s stellar
alo (Bahcall & Soneira 1980 ) and thick disc (Gilmore & Reid 1983 ).
ompared to binaries in the thin disc, the higher ages and sparsity
f baryonic sources in these regions of the Galaxy implies that their
inaries are the most affected by dark matter substructure and the
east affected by baryonic tidal perturbers. However, our constraints
n subhaloes make the conserv ati ve assumption that the observed
resent-day distribution of projected binary separations is due solely
o dark matter subhalo encounters. 

The paper is structured as follows: we present the sample of
inaries in Section 2 . In Section 3 , we model the heating of binaries
s a result of tidal forces e x erted by subhaloes. In Section 4 , we
evelop the statistical methods used to set constraints on subhaloes.
n Section 5 , we set constraints on subhaloes with a wide variety
f density profiles, including density profiles predicted by N -body
imulations of cold dark matter. We make concluding remarks in
ection 6 . 

 GAIA W I D E  BINARIES  

inaries with widely separated stellar components can offer strong
onstraints on a population of tidal perturbers, as the tidal force grows
ith the size of the system on which it acts. While a single encounter
etween a binary and a subhalo may not result in a significant change
n the orbital parameters of the binary, multiple encounters o v er long
ime-scales can slowly evolve the system to much larger separations
r disrupt it altogether. 
Perturbations from baryonic sources (e.g. other stars, gas, and

ust) lead to similar orbital evolution as perturbations sourced by
ark matter substructure. While conserv ati ve limits on the population
f dark matter perturbers can be set by assuming all the evolution is
ue to the dark sector, these constraints can be strengthened by using
ide binaries that orbit in the stellar halo or the thick disc, where

here are fewer baryonic sources. As the end-of-life evolution of a
tar off of the main sequence can introduce significant velocity kicks
o binaries (Davis et al. 2008 ) – which would mimic and obscure the
ffect from perturber encounters – we further restrict ourselves to
inaries whose component stars are long-lived main sequence stars. 
We use for our data set the collection of widely separated binaries

dentified from within the Gaia space telescope’s eDR3 (Brown et al.
021 ) by E21 , using techniques first presented in El-Badry & Rix
 2018 ). Well-measured stars from Gaia eDR3 are grouped with their
eighbours by identifying pairs whose measured relative velocities
nd separations are consistent with bound Keplerian orbits. Groups
NRAS 525, 5813–5830 (2023) 
ith three or more stars that appear bound are filtered out. This
rocess results in an initial catalogue of 1 817 594 binary candidates,
hown in Fig. 1 . 

These binary candidates each have a projected separation s (the
istance between the component stars as projected onto the plane of
he sky) ranging from ∼10 −4 to ∼1 pc. The low-separation tail of this
istribution is set by decreasing sensitivity of the Gaia telescope at
maller angular separation (Fabricius et al. 2021 ) and the difficulty
f resolving o v erlapping stellar components with similar G -band
agnitudes. To ensure our sample is complete at low separations,
e use an empirical fitting function that describes the probability
f Gaia resolving stellar components with angular separation θ and
 -band magnitude difference � G = | G 1 − G 2 | (El-Badry & Rix
018 ), 

 �G 

( θ ) = 

1 

1 + ( θ/θ0 ) −β
, (1) 

here, θ0 characterizes the angular separation below which Gaia
s insensitive to binaries and β determines the rate at which Gaia ’s
ensitivity drops to 0 for θ � θ0 . Following the approach of El-
adry & Rix ( 2018 ), E21 fit the values of θ0 and β for sources in
 range of � G bins. We estimate these parameters for arbitrary � G
y interpolating the fits o v er the binned data. Using this function, we
elect binaries with f � G > 0.999, which roughly corresponds to θ >

 arcsec. 
Following Tian et al. ( 2020 ; hereafter T20 ), we select a subcat-

logue of binary candidates each composed of two main sequence
tars whose tangential velocities relative to the Sun are large, v ⊥ 

>

5 km s −1 , and whose distance from the Sun is < 700 pc. Systems
ith such high tangential velocities are less likely to be members
f the Milky Way’s thin disc, and are instead likely members of the
tellar halo or the thick disc (Chiba & Beers 2000 ; Bensby, Feltzing &
undstr ̈om 2003 ; Venn et al. 2004 ; Yoachim & Dalcanton 2008 ) both
f which contain older stars (Reid 2005 ; Juri ́c et al. 2008 ; Kilic et al.
017 ) that have had fewer tidal interactions with baryonic perturbers
s compared with stars in the thin disc. 
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Figure 2. Left : Projected separation distribution of our selected sample of binaries (purple line), which we use to set constraints on subhaloes. The orange line 
denotes the estimated number of contaminants, obtained by weighting each binary by its contamination probability R . Right : Distribution of measured distances 
from Earth. 
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At large projected separation s , the rate of chance alignments 
pairs of stars in the catalogue which are identified as binaries 
espite not being gravitationally bound in actuality) increases. The 
atalogue of E21 provides for each binary candidate an estimate of the 
robability R that the candidate is a chance alignment. 1 The expected 
istribution of chance alignments in the initial catalogue, which can 
e estimated from these R values, is shown by the green line in
ig. 1 . In Section 4 , we will construct an empirical contamination
odel, treating R as the true contamination probability of binary 

andidates. We therefore select binaries with R ≤ 1. 
As in T19 , we remo v e a majority of the chance alignments in

he initial catalogue by selecting binaries satisfying �μ ≤ �μorbit 

 1.0 σ�μ and σ�μ ≤ 0.12 mas yr −1 , where �μ is the measured 
agnitude of the proper motion difference between stellar compo- 

ents, �μorbit is the maximum proper motion dif ference allo wed if
he components followed a circular orbit of total mass 5 M �, and
�μ is the uncertainty in �μ. 
These selections leave us with a catalogue of 9637 binary candi- 

ates, which we take as our sample. The distribution of projected 
eparation s is shown to the left panel of Fig. 2 . Though the
ample still has a low-separation tail, this is now mainly due to
he incompleteness arising from the selection cut f � G > 0.999 rather 
han Gaia ’s sensitivity, making the incompleteness easier to model 
ccurately (see Section 4 ). Once this incompleteness is taken into 
ccount, the separation distribution can be fit by a broken power law
reaking at ∼0.1 pc. 2 As we will see in Section 4 , our limits will
e set by this break. The distribution of distances from Earth, d , is
hown to the right panel of Fig. 2 . 

As we will describe in Section 3 , our limits will in part be
et by Monte Carlo simulation of the tidal effects of subhaloes 
n a synthetic population of binaries whose properties match the 
 We emphasize that R is itself not strictly a probability, rather it is an estimate 
f a probability. Notably, in some cases, R > 1. 
 At high separations (10 −2 to 1 pc), the data is nearly complete, and so the 
roken power-law behaviour is most clearly seen here even without correcting 
or completeness. 

p  

o
o  

u  

t
a
d  
aia catalogue. We calculate the masses of the stellar components 
and thus the total mass of each binary system) by considering the
ample’s extinction-corrected colour-magnitude diagram – shown in 
he left panel of Fig. 3 . To correct for extinction, we first calculate
he median reddening for each binary using the BAYESTAR 2015 
USTMAP (Green et al. 2015 ) implemented within the PYTHON 

ackage DUSTMAP (Green 2018 ). The reddening values are converted 
o extinction coefficients corresponding to magnitudes measured 
n the G , G BP , and G RP passbands (Evans et al. 2018 ) using the
YIA package (Price-Whelan 2021 ). Subtracting off these extinction 
oefficients from their corresponding observed magnitudes gives the 
ntrinsic magnitudes of the stars. To infer the mass of each star from
ts intrinsic magnitudes, we generate Modules for Experiments in 
tellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) 
Paxton et al. 2011 , 2013 , 2015 , 2018 ); Choi et al. 2016 ; Dotter
016 ) isochrones corresponding to stars of age 10 Gyr, for a
ange of metallicities [Fe/H] from −2.1 to + 0.4. For each star, we
dentify the isochrone closest to the star’s position in the colour-

agnitude diagram. Each of the isochrone’s colour-magnitude values 
orresponds to a unique stellar mass. Each star in the sample then is
ssigned the mass of the closest point within the isochrone. 

Since the BAYESTAR 2015 map is only defined for declinations δ
 −30 ◦, we can only reliably estimate the masses of 6280 binaries,
hich form the empirical distribution in the right panel of Fig. 3 .
e use this subset of binaries to approximate the distribution for the

otal mass corresponding to all 9637 binaries when we construct our
ynthetic population. 

 BI NARY  E VO L U T I O N  

ur goal is to place limits on subhaloes using the distribution of
rojected separations of binaries in the catalogue (see Fig. 2 ). Each
bserved binary was produced with some initial (and unknown) set 
f orbital parameters, and has evolved over time to its current config-
ration in part due to the tidal perturbations from subhaloes. Given
hat the initial conditions and history of random tidal encounters 
re unknown, we must use simulations to determine the statistical 
istribution of the final orbital parameters of the binaries for a specific
MNRAS 525, 5813–5830 (2023) 
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M

Figure 3. Left : Colour-magnitude diagram of stars in the catalogue corrected for extinction. The stars in a binary that are brighter (fainter) than their stellar 
companions are labelled as primaries (secondaries). A 10 Gyr MIST isochrone with metallicity [Fe/H] = 0.0 is shown as a green curve. Right : Binary total mass 
distribution obtained by interpolating the stellar colour-magnitudes o v er a grid of 10 Gyr MIST isochrones. 
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Figure 4. Interaction geometry of perturber-binary encounters. Each pos- 
sible encounter is uniquely specified by the position and orientation of 
the binary relative to the perturber. The former is specified by the impact 
parameter p = | � p | and the angle β. The latter is specified by the angles 
( θ , φ, γ ), where the θ and φ angles describe the orientation of the binary 
components during the tidal interaction, and γ describes the orientation of 
the binary orbital plane. The binary-perturber interaction is independent of 
the angle β. See the text for more details. 
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opulation of subhaloes. We can then fit simultaneously for the
nitial orbital distribution of the binaries and the characteristics of
he subhalo population. 

We first study the effect of a single encounter on the orbit of a
inary, followed by the cumulative effect of many random encounters
n the binary’s orbit. Although the effect of a single encounter on the
inary’s orbit is deterministic, random encounters only allow us to
escribe the effect of encounters as a scattering matrix describing the
robability that a binary possesses a specific orbit after it encounters
 random population of perturbers. 

With this scattering matrix, we can then evolve a population
f simulated binaries from some initial distribution of projected
eparations to a final distribution, assuming a set of dark matter
erturbers with specified properties. This evolved distribution can be
eweighted as the primordial binary distribution is v aried, allo wing
s to set robust limits in Section 4 without assuming a particular
ormation mechanism for the binaries. 

.1 The effect of a single encounter on a binary 

 binary star system consists of two stars in a bound Keplerian
rbit supported by their mutual gravity. The bound orbit is elliptical
nd specified by semimajor axis a and eccentricity e . The physical
eparation r of the stars evolves as 

 = a(1 − e cos ψ) , (2) 

here ψ is the eccentric anomaly, which is related to the dynamical
ime t through 

 = 

P 

2 π
( ψ − e sin ψ ) . (3) 

ere, P = a 3 / 2 
√ 

4 π2 /GM is the binary’s orbital period and M is
he binary’s total mass. 

For tidal interactions between wide binaries and subhaloes within
he Milky Way, the relative speed of each encounter may be high
nough that the time-scale of the interaction is short compared to the
rbital period. In this case, we can invoke the impulse approximation
NRAS 525, 5813–5830 (2023) 
Spitzer 1958 ; Gnedin, Hernquist & Ostriker 1999 ; Binney &
remaine 2011 ; Banik & van den Bosch 2021 ), which treats ψ and

he binary separation r as constant during the interaction. The result is
n instantaneous velocity kick that changes a binary’s orbit. Though
his approximation is valid only for sufficiently wide binaries, we use
t to model encounters for all binaries in our simulations, regardless
f their size. We verify that this does not significantly affect our
imits in Section 5.1 . 

To calculate the effect of a spherically symmetric subhalo moving
ast a binary, we use the interaction geometry of Fig. 4 . The
erturbing subhalo with mass M p mo v es with relativ e speed v p 
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Figure 5. Structure function for perturbers with dif ferent po wer-law density 
profiles given by equation ( 6 ). 
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binary before the encounter is ( a , e , ψ /2 π ) = (0.1 pc, 0.9, 0.64). The encounter 
parameters are ( p , φ, θ , γ , v p ) = (0.17 pc, 0, π /2, 0, 240 km s −1 ). 
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long the z-axis, with an impact parameter � p to the midpoint of the
inary (located in the xy -plane). The separation for the stars during
he encounter is r , which is a function of the orbital parameters a
nd e , as well as the eccentric anomaly ψ , all of which are held
onstant throughout the interaction. During the tidal encounter, the 
xis connecting the binary components is oriented at angles θ and 

relative to � p and the z-axis. Each star therefore has a separate 
mpact parameter � p i ( i = 1, 2). In addition, an angle γ specifies the
rientation of the binary’s orbital plane relative to the cross product 
f the binary separation vector and � p . 
The velocity kicks imparted on the components of the binary are 

hen (Aguilar & White 1985 ) 

 � v i = −2 GM p 

v p 
U ( p i ) 

� p i 

p 

2 
i 

, (4) 

here the structure function U ( p ) (Gnedin 2003 ; Gonz ́alez-Morales,
alenzuela & Aguilar 2013 ) is given by 

( p) = 

∫ ∞ 

1 
d ξ

μp ( pξ ) 

ξ 2 
√ 

ξ 2 − 1 
. (5) 

ere, μp ( r ) is the perturber’s normalized enclosed mass M p ( < r )/ M p ,
here M p is the total mass of the perturber. In Fig. 5 , we plot the

tructure functions of perturbers with radius R p and a power-law 

ensity profile of the form: 

( r; α) = 

{ 

ρ0 

(
r 

R p 

)α

, r ≤ R p 

0 , r > R p , 
(6) 

here ρ0 is a characteristic density set by the perturber’s total mass
 p , and the power-law index is α > −3. Note that as α → −3, the
 function approaches 1 for all p . This is the same structure function

s that of a point-mass perturber. 
The velocity kicks alter the binary’s internal energy per reduced 
ass E = −GM /2 a and internal angular momentum per reduced
ass | � � | = 

√ 

GMa(1 − e 2 ) . The change in E is 

E = 

�v 2 

2 + � v · � � v , (7) 

here � v = � v 1 − � v 2 and � � v = � � v 1 − � � v 2 . The change in � � is 

 

� � = � r × � � v , (8) 

here � r = � r 1 − � r 2 is the separation vector of the stars. 
If � E ≥ | E | , the encounter unbinds the binary. If � E < | E | , then
he binary remains bound, evolving to a new semimajor axis a 

′ = a
 � a with 

�a 

a 
= 

�E / | E | 
1 − �E / | E | , (9) 

nd a new eccentricity e 
′ 
given by 

 

� � + � 

� � | = 

√ 

GMa ′ (1 − e ′ 2 ) . (10) 

p to a minus sign, the new eccentric anomaly ψ 

′ 
is determined by

etting the separation immediately before and after the interaction 
qual 

(1 − e cos ψ) = a ′ (1 − e ′ cos ψ 

′ ) . (11) 

e determine the sign of ψ 

′ 
by noting that it shares the same sign

s the first time-deri v ati ve of the separation r . In Fig. 6 , we show an
xample of the change in a single binary’s orbit due to the tidal forces
rom the passage of a single extended perturber of mass 10 3 M �,
adius R p = 0.1 pc, and constant density. 

.2 Many random encounters on a single binary 

 binary in the Milky Way’s stellar halo/thick disc will have
ncountered many tidal perturbers over its life, each with random ori-
ntations, relativ e v elocities, and impact parameters. The frequenc y
f the encounters depends on assumptions about the population of 
erturbers – the dark matter subhaloes in our case – while the ability
f any particular interaction to modify the binary’s orbit depends on
oth the perturber population (through their individual masses M p 

nd the structure function U ), the time-dependent binary orbital state
semimajor axis a , eccentricity e, eccentric anomaly ψ , and mass M ),
s well as the distance of closest approach and relative orientation of
he tidal encounter. If we assume a uniform population of perturbers
ith an isotropic velocity distribution, the effect of repeated random 

ncounters can be encoded in a scattering matrix (Yoo et al. 2004 ).
n this subsection, we will develop the scattering matrix formalism, 
hich we will then apply to the population of binaries using Monte
arlo techniques in Section 3.3 . 
We denote the state of a binary orbit as � q = ( a, e , ψ). An encounter

ith a subhalo will alter an initial � q 0 to a new � q 1 . For a specified
MNRAS 525, 5813–5830 (2023) 
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ncounter, the evolution from � q 0 is deterministic. However, for the
ncounter parameters ( p , θ , φ, γ , v p ) of an unspecific random
ncounter, the final state can only be quantified by the probability
istribution of � q 1 given � q 0 , f 1 ( � q 1 | � q 0 ). In addition to � q 0 , this probability
istribution depends on the perturber’s structure function and mass,
nd the distributions from which the encounter parameters are drawn.

For repeated encounters, the probability distribution S 2 of the
rbital state after the second encounter, � q 2 , is the probability f 1 of � q 0 
volving to some intermediate � q 1 followed by the probability f 2 of
volution of � q 1 into � q 2 (including the change in the eccentric anomaly
 due to orbital evolution between the first and second encounter),

nte grated o v er all possible intermediate states 

 2 ( � q 2 | � q 0 ) = 

∫ 
d � q 1 f 2 ( � q 2 | � q 1 ) f 1 ( � q 1 | � q 0 ) . (12) 

his can be continued for an arbitrary number of encounters, resulting
n the scattering matrix S , which gives the probability distribution of
he final orbital state � q ≡ � q N given the initial � q 0 and N encounters
etween the binary and subhaloes o v er a total time T 

( � q | � q 0 ) = 

∫ N−1 ∏ 

i= 1 

[ 
d � q i f i+ 1 ( � q i+ 1 | � q i ) 

] 
f 1 ( � q 1 | � q 0 ) , (13) 

here the product of integrals appears from there being N − 1
ntermediate states. As seen in our definition of the scattering matrix,
ur approach follows each binary o v er time – evolving its orbital
tate in response to encounters – rather than calculating the average
esponse of a binary o v er man y encounters. 

In practice, we calculate the scattering matrix via Monte Carlo
imulations. For a binary with initial parameters � q , we draw N random
ncounters o v er a total time T assuming uniform spacing between
ncounters δt ∼ T / N , allowing the binaries to evolve along their
ew orbits after each encounter. 3 As has been previously assumed
o set limits on point-like perturbers (Yoo et al. 2004 ; Quinn et al.
009 ; Monroy-Rodr ́ıguez & Allen 2014 ; Tyler et al. 2023 ), we set
 = 10 Gyr . This is consistent with the age of the stellar halo/thick
isc (Carroll & Ostlie 2017 ), so that scattering occurs from the time
hat the entire binary population was assembled to the present-day. 4 

The subhalo population is assumed to be homogeneous, all with the
ame mass M p and a specified density distribution (we will consider
arious possible density profiles in Section 5 ). In this section, we
ake perturbers with mass M p = 10 3 M �, radius R p = 0.1 pc, and
niform density profile [ ρ( r ) = constant] as our working example.
e assume that both the binaries and the perturbing subhaloes

re moving in the stellar halo 5 with isotropic Maxwell–Boltzmann
NRAS 525, 5813–5830 (2023) 

 A more physically moti v ated assumption would be to simulate encounters 
ith a random time-step rather than uniform. Ho we ver, this choice would 

imit our ability to parallelize our code. We have compared results using 
oth random and uniform spacing between encounters and found them to be 
dentical. 
 Implicitly, this assumes our halo/thick disc binaries were all assembled 
oon after the stellar population was formed – a possibility difficult to 
erify as binary formation is currently not well-understood. F or e xample, our 
ssumption is compatible with the scenario that our binaries were byproducts 
f dissolving clusters (Moeckel & Bate 2010 ; Moeckel & Clarke 2011 ), as 
issolution occurs o v er time-scales of 20–50 Myr (Kouwenho v en et al. 2010 ). 
o we ver, it is false if our binaries formed through the chance entrapment 
f stars in tidal streams (Pe ̃ narrubia 2021 ), a process expected to occur 
ontinuously o v er the evolution of the Galaxy. Therefore, by forming later 
han assumed, many of our observed binaries would have less time to interact 
ith subhaloes, leading to weaker limits. 
 As the disc stars are rotationally-supported, thick disc binaries are more 
ikely to experience lower-velocity encounters than halo binaries. Since 
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elocity distributions – each with velocity dispersion σ satisfying
 

2 σ = 200 km s −1 (Yoo et al. 2004 ; Binney & Tremaine 2011 )
nd truncated at the local escape velocity, v esc = 533 km s −1 (Piffl
t al. 2014 ; Zyla et al. 2020 ). Similar to Yoo et al. ( 2004 ), these
istributions yield a relativ e v elocity distribution consistent with
ubhaloes moving in an isothermal sphere with circular velocity v c =
20 km s −1 and halo binaries with velocity dispersions given by ( σπ ,
θ , σ Z ) = (153, 106, 101) km s −1 , as measured in RR Lyrae stars
oving in the stellar halo (Muhie et al. 2021 ). We specify the number

ensity of the subhaloes as the fraction f p of the total local dark matter
ensity they compose, assuming ρDM 

= 0 . 0104 M � pc −3 (Catena &
llio 2010 ; Read 2014 ; Zyla et al. 2020 ). Thus, the local number
ensity is specified by f p and M p . 
During the Monte Carlo simulations, we draw random encounter

arameters corresponding to the impact parameter, relative velocity,
rientation of the binary separation relative to the subhalo trajectory,
nd relative orientation of the binary’s orbital plane for each en-
ounter. The velocities v p are sampled from the assumed Maxwell–
oltzmann distributions, the separation orientation angles ( θ , φ)
re sampled uniformly from the solid angles �, the orbital plane
rientation angles γ are sampled uniformly from 0 to 2 π , while the
mpact parameters p are sampled uniformly from the disc around the
inary’s midpoint. As we cannot sample impact parameters out to
nfinity, we sample up to a maximum impact parameter p max , defined
s the impact parameter at which the expected cumulative set of
idal interactions – each with impact parameters > p max – between
he subhalo and the binary can, at maximum, inject 1 per cent of the
inary’s initial binding energy o v er time T (assuming circular binary
rbits and perturber velocity perpendicular to the binary). We have
erified that our results are robust to this choice of p max . 

To calculate the expected number of tidal encounters N , we first
ote that the scattering rate d N / d t of a binary interacting with
erturbers with fix ed relativ e v elocity v p depends on the subhalo
ass M p , fraction of the dark matter density composed of perturbers

 p , and p max as 

d N 

d t 
= f p 

(
ρDM 

M p 

)
× πp 

2 
max × v p . (14) 

he expected time between encounters is δt = (d N / d t) −1 . Given our
elativ e v elocity distribution, we calculate the v elocity-av eraged time
etween encounters, 〈 δt 〉 , from which we can calculate the expected
umber of encounters in time T as 

 = int 

[
T 

〈 δt 〉 
]

. (15) 

In Fig. 7 , we show the evolution of four example M = 1 M �
inaries o v er 10 Gyr. All four began in the same initial state ( a 0 , e 0 ,
 0 ) = (0.1 pc, 0.5, 0) and interacted with a population of uniform-
ensity subhaloes with ( M p , R p , f p ) = (10 3 M �, 0.1 pc, 1). As the
our binaries randomly interact with perturbers, their orbits evolve
n different ways. While individual binary-subhalo interactions can
ncrease or decrease the semimajor axis, the general trend can be
een to be one of gradually widening binaries from tidal heating.
n this particular set of examples, 6 three out of four of the binaries
nd with complete disruption ( a → ∞ ) as a final encounter leads
ower-velocity encounters lead to stronger velocity kicks, assuming thick 
isc binaries have the same velocity distribution as halo binaries leads to 
onserv ati ve limits. 
 These binaries are chosen to highlight the various ways that binaries may 
volve under the influence of perturbative encounters, and do not necessarily 
 x emplify the most probable binary evolution. 
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Figure 7. Semimajor axis and eccentricity evolution (solid lines) of four identical binaries under the influence of uniform-density perturbers with ( M p , R p , 
f p ) = (10 3 M �, 0.1 pc, 1). All the binaries have mass M = 1 M � and are initially in the state ( a 0 , e 0 , ψ 0 ) = (0.1 pc, 0.5, 0). They evolve for 10 Gyr. Disruption 
times are denoted by the dashed vertical lines. 

Figure 8. Probability density of scattering to semimajor axis a assuming 
e 0 = 0.5, ψ 0 /2 π = 0, and M = 1 M � after 10 Gyr evolution with a population 
of uniform-density perturbers with ( M p , R p , f p ) = (10 3 M �, 0.1 pc, 1) for 
three initial semimajor axes: a 0 = 0.01, 0.05, and 0.1 pc. Each distribution 
was obtained using 10 6 simulated binaries. 
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o energy injection abo v e the binding energy, while the fourth case
xperiences only negligible changes in its semimajor axis. 

In Fig. 8 , we show the final distribution of a given initial e 0 =
.5, ψ 0 = 0, and initial semimajor axes of a 0 = 0.01, 0.05, and
.1 pc for binaries with M = 1 M �. Each distribution was calculated
sing 10 6 Monte Carlo simulations. These are the scattering matrices 
or the semimajor axis a corresponding to the three initial binary 
onfigurations, marginalized o v er the rest of the orbital elements. 
rom these results, we see that, as the semimajor axis of a binary

ncreases, interactions with the subhalo population can more easily 
ncrease a or destroy the binary. 7 
 The latter is seen from the decreasing normalization of the probability 
ensity. 

e
>  

T  

p

.3 The effect of many random encounters on multiple binaries 

he scattering matrix formalism – which describes the probability 
istribution of a binary’s final orbit ( a , e , ψ) given a specified initial
rbit and a population of subhalo perturbers – can now be applied
o a population of binaries that themselves have a range of initial
onditions. Our ultimate goal is to compare a predicted distribution 
ith measurable parameters within the Gaia wide binary catalogue; 

o that end, we will construct a probability distribution of the observed
eparation s between the stellar components of the binaries. 

We denote the initial probability distribution of the orbital state 
�  0 as φ0 ( � q 0 ). As our sample consists of binaries with different

asses, we redefine the binary state to include the binary mass M :
�  → ( a, e, ψ, M). Unlike the other elements of the state vector, M ,

hile affecting the evolution of a binary, does not change during the
volution. With this change in notation, the present-day probability 
istribution of � q after experiencing encounters with a population of 
ubhaloes o v er time T , is 

( � q ) = 

∫ 
d � q 0 S( � q | � q 0 ) φ0 ( � q 0 ) . (16) 

To calculate the present-day distribution φ, we must specify initial 
istributions for the binary orbital state parameters. The initial 
istribution of the semimajor axes of wide binaries is not well
nderstood, though it is generally taken to be a power law ( ̈Opik
924 ; W asserman & W einberg 1987 ; W einberg et al. 1987 ). As
 result, we will not specify this distribution a priori. Rather, we
ssume it obeys a power law and marginalize our constraints o v er
he power-la w inde x – in Appendix A , we consider the possibility
hat the initial semimajor axis distribution is a broken power law, as
n T19 . 

We then calculate φ( � q ) o v er narrow ranges of a 0 (assuming
niform distributions within this range). In Section 4 , when we place
bservational limits on a population of subhaloes given our sample 
f binaries, we can then vary the initial distribution of the semimajor
xes by reweighting each range of a 0 . 

The initial distribution of eccentricities e 0 is usually taken to be
ither thermal, φ0 ( e 0 ) = 2 e 0 , or superthermal, φ( e 0 ) ∝ e κ0 (where κ
 1; Jeans 1919 ; Weinberg et al. 1987 ; Geller et al. 2019 ; Hwang,
ing & Zakamska 2022 ). The Gaia wide binaries from E21 have a
resent-day distribution of eccentricities that is consistent with the 
MNRAS 525, 5813–5830 (2023) 
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M

Figure 9. Number of binaries per bin of logarithmic projected separation for binary populations that each have evolved with a different set of 0.1 pc uniform- 
density perturbers for 10 Gyr (solid lines) and were initially distributed uniformly in logarithmic semimajor axis (dashed line). Left : Perturbers have various 
masses M p and f p = 1. Right : Perturbers have mass M p = 10 3 M � and various perturber fractions f p . 
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8 This range is larger than the 10 −4 − 10 0 pc range of the wide binary 
catalogue, to allow for binaries migrating into the region of interest as a result 
of tidal encounters. 
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uperthermal exponent κ increasing from κ = 1 as the semimajor
xis increases (Hwang et al. 2022 ), though the full behaviour of
his distribution is not well-characterized. Highly-eccentric orbits
ill be more susceptible to disruption during tidal encounters with a

ubhalo (due to the greater amount of time binaries spend around their
pocentric phases). Such orbits are more common in superthermal
istributions, and so, to place conserv ati ve limits, we adopt the
hermal distribution for our initial eccentricities. 

The eccentric anomaly ψ in the Gaia catalogue of wide binaries
s not directly observ able. Ho we ver, the initial phases of the binaries
 0 are expected to be randomly distributed in dynamical time t with
niform probability. Therefore, from equation ( 3 ), the conditional
robability of ψ 0 given e 0 is 

0 ( ψ 0 | e 0 ) = 

1 

2 π
(1 − e 0 cos ψ 0 ) . (17) 

he initial distribution of masses M is given by the empirical mass
istribution to the right of Fig. 3 . 
The most directly measurable property of the wide binaries in the

aia catalogue is not the semimajor axis, eccentricity, or eccentric
nomaly. Rather, it is the projected separation s of the binaries at the
ime of observation. It is related to the physical separation r through
he line-of-sight inclination angle of the binary i 

 = r cos i, (18) 

here r is related to the orbital state � q through equation ( 2 ). We
ssume binaries are uniformly distributed in sin i , as the orientation
f the binaries is uncorrelated with their line of sight to Earth
Wasserman & Weinberg 1987 ). The probability distribution for s
s then 

( s) = 

∫ 
d sin i 

∫ 
d � q δ( s − r cos i) φ( � q ) , (19) 

here δ denotes the Dirac delta function. 
As an example, we show in Fig. 9 the numerically-derived distri-

utions for φ( s ) assuming an initial distribution of semimajor axes
hich is uniform in log-space. For our example subhalo population,
e continue using uniform-density subhaloes with radius R p =
NRAS 525, 5813–5830 (2023) 
.1 pc. We repeat the numerical calculation for different choices
f perturber mass M p and perturber fraction f p . For these numeric
alculations, we generate binaries with semimajor axes sampled
niformly across 175 bins logarithmically spaced between a 0 = 10 −5 

nd a 0 = 10 2 pc. 8 Each bin contains 10 4 binaries. After evolving the
inaries with subhaloes for 10 Gyr, the initially flat distribution in s
evelops a characteristic break at large separations, due to the energy
njection from the perturbers. It is this deficit of the widest binaries
hat will allow us to set limits on the dark matter substructure in
ection 4 . 
Though the distribution of s has been numerically calculated from

amples drawn from a flat distribution of a 0 in log-space ( φ0 ( a 0 ) ∝
 

−1 
0 ), the behaviour of φ( s ) under different assumptions of φ0 ( a 0 ) can
e straightforwardly calculated by reweighting the binaries based on
heir initial semimajor axis using equation ( 16 ). In Fig. 10 , we show
he initial and final distribution of s for three different power-law
istributions of initial semimajor axis: φ0 ( a 0 | λ) ∝ a λ0 for λ = 0, −1,
nd −2. These results indicate that the asymptotic behaviour of the
ower law past the break induced by the perturbers is independent of
he initial semimajor axis distribution. For the remainder of this work,
e will assume the initial probability distribution for the semimajor

xis is drawn from a power law with index λ, with the value of λ fit
o data, as we will describe in the next section. 

 STATISTICAL  M E T H O D S  

n the previous section, we determined how binary orbits evolve
hen they are subject to random encounters with subhaloes and
umerically calculated a scattering matrix that can be integrated over
he initial distribution of binaries to give the present-day probability
istribution of binary projected separations. We must next compare
ur calculation of the predicted separation distribution with the
bserved separation distribution of our sample binaries in order to
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Figure 10. Dashed lines: Initial projected separation distribution of three 
populations of binaries with different initial semimajor axis distributions, 
each obeying dif ferent po wer laws and normalized to 10 6 binaries. Solid lines: 
Projected separation distributions of the various populations of binaries after 
the y e xperience encounters with uniform-density perturbers with ( M p , R p , 
f p ) = (10 3 M �, 0.1 pc, 1) for 10 Gyr . 
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et limits on the population of subhaloes. In this section, we will
emonstrate our approach using a single type of subhalo population 
ith uniform density distributions. We will consider other models of 
ark matter perturbers in Section 5 . 
Previously, we have calculated the probability distribution for the 

inary projected separation s , given tidal interactions over time T
riginating from a population of subhaloes composing a fraction f p 
f the dark matter density and the power law of the initial semimajor
xis distribution λ. To make these dependencies explicit, we write 
he present-day distribution as φ( s) → φ( s| λ, f p , � ζ ), where we have
ntroduced a parameter vector � ζ encoding all other information about 
he population of subhaloes, e.g. the perturbers’ masses, radii, and 
ensity profiles. 
As stated previously, we wish to set limits on the subhalo abun-

ance f p marginalized o v er the possible semimajor axis distributions
while keeping the other perturber properties � ζ fixed. Ho we ver, 

he power -law distrib ution does not account for Gaia ’s sensitivity
o binaries at different separations or the selection criteria we made 
n Section 2 . For our sample to be complete at low separations, we
equired f � G > 0.999. This amounts to setting an angular separation 
utoff θ� G , depending on the difference in the binary component 
agnitudes � G . Including this selection effect, the probability of

etecting and selecting a binary located a distance d from Earth with
rojected separation s is (El-Badry & Rix 2018 ) 

 b ( s| d , �G ; λ, f p , � ζ ) = 

φ( s| λ, f p , � ζ ) � ( s/ d − θ�G 

) ∫ 
d s ′ φ( s ′ | λ, f p , � ζ ) � ( s ′ / d − θ�G 

) 
, (20) 

here � is the Heaviside theta function. 
Moreo v er, as discussed in Section 2 , not every pair of stars in

he binary catalogue is necessarily a true binary. To account for
he presence of chance alignments in our sample, we model their 
eparation distribution with a power law, φc ( s| λc ) ∝ s λc (we consider
ther fitting functions in Appendix B ), and subject them to the same
election effects as the binaries. The probability of detecting and 
electing a chance alignment located a distance d from Earth with 
rojected separation s is 

 c ( s| d , �G ; λc ) = 

φc ( s | λc ) � ( s / d − θ� G ) ∫ 
d s ′ φc ( s ′ | λc ) � ( s ′ / d − θ� G ) 

. (21) 

sing the abo v e two distributions, the probability of having either a
inary or a chance alignment in our catalogue is 

p( s| d , �G, R ; λ, λc , f p , � ζ ) = 

(1 − R ) p b ( s| d , �G ; λ, f p , � ζ ) + R p c ( s| d , �G ; λc ) , 

here R denotes the probability that a selected pair of stars is a
hance alignment. As suggested by our notation, for this we use the
ontamination probability estimate discussed in Section 2 . 

With the probability distribution given by equation ( 22 ), we can
ow calculate a likelihood function L of our Gaia eDR3 wide binary
ample, as a function of the perturber fraction f p corresponding 
o a subhalo population described by the parameters � ζ , the initial
emimajor axis distribution φ0 ( a 0 | λ) ∝ a λ0 , and the population of
hance alignments, φc ( s| λc ) ∝ s λc . Assuming the binaries do not
ffect each other’s evolution or detectability, the likelihood function 
s 

 = 

∏ 

i 

p( s i | d i , �G i , R i ; λ, λc , f p , � ζ ) , (23) 

here the index i labels the binaries within the sample. 
From this, we use Bayes’ Theorem to infer the posterior dis-

ribution for the model parameters { λ, λc , f p } , given the data
 s i , d i , �G i , R i } i . We set a limit on the fraction f p of the dark matter
omposed of subhaloes specified by the fixed set of parameters � ζ .
n practice, we sample the posterior distribution using the EMCEE 

ode (F oreman-Macke y et al. 2013 ), assuming uniform priors for
 λ, λc , log f p } , and marginalize o v er the power-la w indices λ and λc 

o obtain the probability distribution for the perturber fraction f p . In
his way, we report our limit as a 95 per cent probability bound of
he perturber fraction f p . 

A sample of the posterior distribution corresponding to a popu- 
ation of uniform-density subhaloes with mass M p = 10 3 M � and
adius R p = 0.1 pc is shown in Fig. 11 . We find the perturber fraction
s constrained by the data to be f p < 0.28 at the 95 per cent level,
ndicated by the solid vertical line at the right end of the distribution
or f p . In Fig. 12 , we show the initial power -law distrib ution of
inary separation as well as the evolved final distribution, o v erlaid
n the data. The deviation at low separations is mainly due to the
election cut f � G > 0.999. We note that our best-fit for the unbroken
ower-la w inde x λ is consistent with the results of T19 , and the
hance-alignment power-law index λc is roughly independent of the 
erturber population. 

 RESULTS  

n this section, we now set limits on subhaloes with different
otal mass, radius, and density distributions. First, we continue 
nalysing populations of uniform-density perturbers to show how 

ur constraints depend on the perturber mass and radius. Next, 
e vary the density profile along with the mass and radius by

onsidering perturbers with power-law density profiles. Finally, we 
et limits on a population of Milky Way-like subhaloes whose 
ensity distributions follow a Navarro–Frenk–White (NFW) density 
istrib ution (Na varro, Frenk & White 1996 ), as predicted by N
ody simulations. Throughout this section, we set constraints using 
cattering matrices calculated by simulating 5000 binaries per bin of 
nitial semimajor axis. 
MNRAS 525, 5813–5830 (2023) 
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M

Figure 11. Sampled posterior distribution of the model parameters { λ, λc , 
f p } for uniform-density perturbers with ( M p , R p ) = (10 3 M �, 0.1 pc). The 
vertical dashed lines in the 1D histograms denote 5 per cent, 50 per cent, and 
95 per cent quantiles. The vertical red line corresponds to our limit on the 
perturber fraction. The inner and outer boundaries of the 2D contours denote 
68 per cent and 95 per cent error contours. 

Figure 12. Fit of the model binary population from Fig. 11 to the sample 
binaries. The expected probability density of observed binaries is given as a 
histogram produced by weighting each binary candidate with the probability 
that it is a true binary: 1 − R . The best-fitting initial and evolved separation 
distributions are denoted as solid lines. The bands around those lines denote 
95 per cent uncertainties around the best-fitting model parameters. 
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Figure 13. Limits on populations of uniform-density perturbers with differ- 
ent masses M p and R p = 0 . 1 pc . The line and shaded area denote the 95 
per cent-e xcluded re gion. 
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9 The weaker effect results from encounters becoming increasingly adiabatic 
as a binary’s orbital period becomes larger than the encounter crossing time. 
The presence of adiabatic invariants then constrain the binary to respond to 
encounters in a way that leaves its energy and angular momentum unchanged 
(Gnedin et al. 1999 ; Pe ̃ narrubia 2019 ; Banik & van den Bosch 2021 ). 
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.1 Limits on uniform-density perturbers 

o analyse how the constraints on our uniform-density 0.1 pc
erturbers depend on the perturber mass M p , we run our Monte Carlo
echnique and statistical analysis for several perturber populations,
ith masses between 10 M � and 10 8 M �. The results are shown in
ig. 13 . We find that perturbers with M p � 95 M � cannot make up
00 per cent of the local dark matter density at the 95 per cent level.
NRAS 525, 5813–5830 (2023) 
bo v e this mass, f p can be at most ∼ 25 per cent of the local dark
atter density. 
For perturber masses M p � 10 8 M �, the impulse approximation

egins to fail, using the criteria described in Yoo et al. ( 2004 ). For
uch massive perturbers, the crossing time for the closest expected
ncounter becomes longer than the binary period (for binaries with s
 0.01 pc). Once the impulse approximation is no longer valid, the

njection of energy is on average less than that calculated assuming
he approximation. 9 As a result, if the impulse approximation is
 xtended be yond its range of validity to high masses, the limits set
ill be o v erly strong. We therefore do no show limits for perturbers

bo v e 10 8 M �. 
We next consider the limits on uniform-density perturbers as both

he mass M p and radius R p are varied. The results are shown in Fig. 14 .
n the left panel, we show the maximum value of f p allowed by the
ata as a function of M p for various choices of R p . In the middle
anel, we show the limits as a function of R p for different values
f M p . As can be seen, as the radius of the perturber increases, the
erturber mass at which f p = 1 is ruled out increases as well; at high
ass or small radius, the maximum perturber fraction asymptotes

o f p ∼ 0.25. The right panel of Fig. 14 shows the contours of the
aximum f p as a function of M p and R p . For radii below ∼0.1 pc,

he limits on f p are independent of R p . For R p � 0.1 pc, the contours
f constant f p behave approximately as M p ∝ R 

2 
p . 

.2 Limits on power-law perturbers 

eyond mass and size, we expect our limits to depend on the
erturber density profile. To quantify this dependence, we set limits
n perturbers with various power-law density profiles, ρ( r ; α) ∝ r α ,
runcated at radius R p and normalized to mass M p , see equation ( 6 ). 
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Figure 14. Constraints on general uniform-density perturbers. Left : Limits on f p o v er a range of masses M p for discrete values of perturber radius R p . Middle : 
Limits on f p o v er a range of radii R p for discrete values of perturber mass M p . Right : Contours of f p limits in ( M p , R p )-space. 
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The results are shown in Fig. 15 . These plots show that constraints
re generally stronger for perturbers with higher central densities. 
he strengthening of the limits is most significant when the power- 

a w inde x α � −2. This is most clearly seen by directly comparing
he contour corresponding to f p = 1 as density is varied, as is shown in
ig. 16 . Recall that as α → −3, the energy injection approaches that
f a point-mass perturber, and so the dependence on R p disappears. 

.3 Limits on NFW perturbers 

aving considered dark matter perturbers that follow a simple power- 
aw density distribution, we apply our formalism to constrain dark 
atter subhaloes that follow more complicated density distributions. 
e consider subhaloes having an NFW density profile. While other 

ark matter density distributions (e.g. Einasto) also exist in the 
iterature, the NFW profile is observed to provide good fits to 
ark matter distributions across a wide range of halo masses both 
bservationally (Schulz, Mandelbaum & Padmanabhan 2010 ; Okabe 
t al. 2013 ; Newman, Ellis & Treu 2015 ) and in simulation (Springel
t al. 2008 ). 

The NFW distribution transitions from an α = −1 power law for
adii below the scale radius R s to α = −3 for larger radii, before
eing truncated at the virial radius R V : 

NFW 

( r; R s , R V ) = 

{ 

ρ0 

(
r 
R s 

)−1 (
1 + 

r 
R s 

)−2 
, r ≤ R V 

0 , r > R V , 
(24) 

here the density parameter ρ0 sets the virial mass M V . In this way,
he NFW profile has three free parameters: M V , R s , and R V . 

Following the typical notation, we define the virial radius R V 

n terms of R s and a dimensionless concentration parameter c : 
 V ≡ cR s . For subhaloes within a Milky Way-like host galaxy, 
olin ́e et al. ( 2017 ) used N -body simulations to derive the following

oncentration–mass relationship: 

 ( M V , x sub ) = c 0 

[ 

1 + 

3 ∑ 

i= 1 

[
a i log 

(
M V 

10 8 h 

−1 M �

)]i 
] 

×
[
1 + b log ( x sub ) 

]
, (25) 

here c 0 = 19.9, � a = ( −0 . 195 , 0 . 089 , 0 . 089), b = −0.54, and the
arameter x sub is the ratio between the distance of the subhalo from
he centre of its host halo and the host halo’s virial radius. We take
he former to be the Galactocentric distance to the Sun R � ∼ 8 kpc
Abuter et al. 2019 ; Zyla et al. 2020 ) and the latter to be the Milky
ay’s virial radius R 

MW 

V ∼ 290 kpc (Deason et al. 2020 ). Under these
ssumptions, the concentration c of NFW perturbers varies between 
80 − 120 for subhaloes with masses � 10 8 M �. We therefore take
 = 100 for our NFW perturbers, allowing us to quantify their density
rofiles with two numbers: M V and R V . 
We note several important caveats in the relationship given by 

quation ( 25 ). First, it was derived for subhaloes with R V � 10 −1 pc,
hich is larger than the lower limit of perturber radii we consider.
econd, the smallest simulated subhaloes were evolved only to 
edshift z = 32. We will assume the concentration–mass relation does
ot change significantly up to z = 0. Third, we expect subhaloes to
xperience tidal effects that affect their masses and density profiles. 
s a notable example, this relation does not account for the presence
f baryonic matter. Overall, the properties of dark matter halos below

10 6 M � are as yet not observationally constrained and so our limits
re subject to the uncertainties associated with the concentration–
ass relationship in equation ( 25 ). 
With these caveats stated, in Fig. 17 , we show the upper limits (as

et by the Gaia wide binary catalogue) on f p as a function of M V and
 V , assuming c = 100. 
While we have treated the virial mass and the virial radius of the

FW perturbers as free parameters, the evolution of collisionless cold 
ark matter is expected to provide an additional relationship between 
he two parameters (though the precise form of this relationship 
epends on the environment in which they evolved). For cold dark
atter evolving under the influence of gravity only, the virial radius

an be set as the radius at which the dark matter density of the halo
s a factor � = 200 greater than the critical density of the Universe
c = 2.77 × 10 −7 h 2 M � pc −3 (Zyla et al. 2020 ). Combined with
ur assumption of c = 100 for low-mass subhaloes, this allows us to
pecify an NFW subhalo with a single parameter, R V . The ‘canonical’
irial mass of an NFW profile with virial radius R V we denote as M 

∗
V : 

 

∗
V = 

(
4 πR 

3 
V 

3 

)
ρc �. (26) 

As we will show, the subhaloes predicted by equations ( 25 ) and
 26 ) have too little mass (for a given R V ) to be constrained by the
ide binary data. Defining the NFW virial mass as M V ≡ χM 

∗
V , we

how in Fig. 18 the upper limits on χ as a function of R V (or M 

∗
V ).

hese limits show that subhaloes must be at least 5000 times more
assive than the prediction of NFW profiles from cold dark matter

imulations to be constrained. 
MNRAS 525, 5813–5830 (2023) 
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M

Figure 15. Limits on perturbers with power-law density profiles. As in Fig. 14 the columns correspond to limits on f p versus M p for discrete values of R p 

( left ), f p versus R p for discrete values of M p (centre), and R p versus M p for discrete values of f p (right), with each row corresponding to perturbers with different 
power-law indices α. 
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 C O N C L U S I O N S  

e have constrained dark matter subhaloes in a model-independent
ay using a catalogue of Gaia eDR3 wide binary candidates. In
eneral, we find that subhaloes with length scales � 0.1 pc and
asses � 65 M � cannot make up 100 per cent of the dark matter

Fig. 16 ). The limit in the subhalo abundance drops from 100 per cent
f the local dark matter density to around 25 per cent as the mass
ncreases to ∼1000 M � (Fig. 15 ). For scales � 0.1 pc, we found
onstraints to be dependent on the subhalo density profile such that
igher central densities are given stronger constraints (Fig. 16 ). 
In addition, we calculated how much subhaloes with an NFW

rofile can deviate from the predictions of cold dark matter modelling
ithout being constrained by our binary sample (Fig. 18 ). Across

ll length scales probed by our binaries, constraints apply only to
ubhaloes that are at least 5000 times more massive than those
redicted by simulation. While not constraining collisionless cold
ark matter scenarios, additional interactions within the dark sector
NRAS 525, 5813–5830 (2023) 
an lead to significantly denser substructure (Buckley & DiFranzo
018 ; Choquette, Cline & Cornell 2019 ; Bai, Long & Lu 2020 ;
ernandez et al. 2022 ). As this work sets the first limits on subhaloes
t O(1 pc ) length scales, wide binaries can be used to constrain new
egions of parameter space for dark matter models. 

We have focused on constraining populations of subhaloes each
ith a monochromatic mass spectrum. To set constraints on sub-
aloes with extended (time-independent) mass functions, it is pos-
ible to modify the scattering formalism to include specific choices
or the mass function. Ho we ver, the approach of Carr et al. ( 2017 ) to
xtract limits on extended mass functions of primordial black holes
rom monochromatic constraints can be applied to our results as well.

Given our constraints f p ( M p ) ≤ f max ( M p ) on a monochromatic
erturber mass function, one can estimate constraints on subhaloes
ith the mass function ψ( M p ) ∝ M p d n /d M p , normalized so that the

raction of dark matter existing as the subhaloes is given by f ψ ≡
 

d M p ψ( M p ). The constraint for the extended subhalo population
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Figure 16. f p = 1 contours for various perturber density power-law indices 
α. 

Figure 17. Limits on NFW subhaloes in the Milky Way. Here, the virial 
mass M V and the virial radius R V are allowed to vary, while the concentration 
parameter is fixed to c = 100. 
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Figure 18. Limits on modified cold dark matter NFW subhaloes in the Milky 
Way. Here, the subhalo mass M V is a rescaling of its canonical virial mass: 
M V = χM 

∗
V , while the rest of the NFW parameters are held fixed to their 

canonical values. 
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10 Varying local dark matter densities have previously been taken into account 
by rescaling ρDM 

to the mean time-averaged dark matter density experienced 
by a subsample of binaries with known velocities (Monroy-Rodr ́ıguez & 

Allen 2014 ; Tyler et al. 2023 ). Out of our wide binary catalogue, the velocities 
of 250 binary candidates have been measured. Following the technique of 
Tyler et al. ( 2023 ), we found the time-averaged local dark matter density 
〈 ρDM 

〉 to have a mean of 9 . 7 × 10 −3 M � pc −3 and a standard deviation of 
2 . 9 × 10 −3 M / pc 3 . 
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an be estimated from the following inequality: ∫ 
d M p 

ψ( M p ) 

f max ( M p ) 
≤ 1 . (27) 

Limits on extended dark matter substructure may be improved in 
he future in a number of ways: 

(i) Our statistical modelling allows wide freedom for the initial 
istribution of wide binaries. A better understanding of the binary 
roduction mechanism may restrict the viable parameter space, 
eading to tighter constraints on the characteristic break in the binary 
eparation distribution due to tidal interactions with dark matter 
ubhaloes. 

(ii) A sample of binary candidates with fewer chance alignments 
ould reduce the uncertainty of our constraints from marginalizing 
 v er the contamination model parameters. 
(iii) Our constraints were derived assuming a subhalo density set 
n terms of the local dark matter density around the Sun. Binary
inematic data allows us to better account for changes in each
inary’s local dark matter density as they orbit about the Galaxy
Quinn et al. 2009 ; Monroy-Rodr ́ıguez & Allen 2014 ; Tyler et al.
023 ). 10 Relying on Gaia data alone, we are mainly limited by
nknown radial velocities. This may impro v e with Gaia DR4 (Evans
t al. 2022 ), or with cross-matched data from other surv e ys (Leclerc
t al. 2022 ). 

(iv) Our constraints on NFW subhaloes depend on the validity 
f using the concentration–mass relation given by equation ( 25 ) to
escribe subhaloes existing within a Milky Way-like host halo. As the 
aveats to this adoption have been noted, future work should either
ore carefully assess the validity of this assumption or apply an

pdated concentration–mass relation. Such a relation should account 
or small-scale subhalo evolution up to the present day and the various
idal effects that subhaloes experience throughout their evolution, 
uch as those arising from the presence of baryonic matter. 

(v) A larger sample of binaries will increase the statistical power 
f our method. The number of Milky Way halo/thick disc binaries
vailable can be increased by either using larger comprehensive 
ata sets (e.g. Gaia DR3) or by cross-matching binaries existing 
n various data sets (LAMOST, APOGEE, RAVE, GALAH, GDS). 
lternatively, it may be possible to surv e y wide binaries in ultrafaint
warf galaxies (e.g. Draco II Wilson 1955 ) using high-power space
MNRAS 525, 5813–5830 (2023) 
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elescopes, such as the JWST (Gardner et al. 2006 ), which opens the
ossibility of setting limits on substructure outside of the Milky Way
Walker, Kervick & Penarrubia 2021 ). 
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PPENDIX  A :  M O D E L L I N G  T H E  INITIAL  

E MIMAJOR  A X I S  DISTRIBU TION  

hough the initial semimajor axis distribution of wide binaries is 
enerally taken to obey a power law, this assumption is in part
oti v ated by observation of the present-day distribution (L ́epine &
ongiorno 2007 ; Andrews, Chanam ́e & Ag ̈ueros 2017 ; Tian et al.
020 ). It is possible that the initial distribution deviates from a simple
ower law for reasons that are independent of perturber interactions, 
ue to some unidentified production mechanism or post-production 
ssembly. T19 proposes that the initial semimajor axis distribution 
f wide binaries might instead be drawn from a broken power law. 
To address this, we model the initial distribution of binary 
emimajor axes a 0 using a smoothly broken power-law distribution, 
hich takes the following form 

0 ( a 0 ) ∝ 

(
a 0 

a b 

)λ1 
{ 

1 

2 

[ 

1 + 

(
a 0 

a b 

)1 /� 

] } ( λ2 −λ1 ) � 

(A1) 

here a b sets the scale at which the power-law transitions from
ndex λ1 to λ2 and � specifies the speed of the transition. As we
arginalize o v er these parameters, we restrict ourselves to formation
echanisms that lead to a decrease in the number of binaries with

espect to increasing a 0 , so λ1 , λ2 < 0. 
Our updated constraints corresponding to this choice of initial 

emimajor axis distribution are given in Figs A1 –A2 . As we see, our
onstraints are weaker, mainly due to the data preferring a model
here λ2 ∼ 0 and a b ∼ 0.1 pc. That is, the preferred fit in this case is

or the widest binary assembly to be independent of semimajor axis.
he observed decrease in the binary population at large s then would
e primarily due to encounters with the dark matter perturbers. 
Though these results suggest that our constraints would be 

ignificantly weaker under the assumption of a broken power-law 

roduction mechanism, it is plausible that the assembly process for 
he widest binaries should be less efficient as the semimajor axis
ncreases (restricting the possible values of λ2 and λ1 ). For instance, 
t has been proposed that wide binaries with separations � 0.1 pc
ere most likely formed as a random alignment of two stars with

o w relati v e v elocities in an e xpanding cluster (Kouwenho v en et al.
010 ; Moeckel & Bate 2010 ; Moeckel & Clarke 2011 ; Griffiths
018 ; Tyler et al. 2023 ). This ‘soft capture’ occurs on time-scales of
0–50 Myr for each cluster (Kouwenho v en et al. 2010 ), much shorter
han the 10 Gyr evolution time within the halo and thick disc that
his paper is concerned with. The distributions of inter-star distances 
ithin the cluster result in a falling distribution of binary semimajor

xes under this mechanism. 
As argued in T19 , wide binaries produced from a single cluster

ould have an initial semimajor axis distribution given by the 
ower law φ0 ( a 0 ) ∝ a 

−3 / 2 
0 , breaking at a characteristic length scale

corresponding to the cluster’s tidal radius) to a steeper decline of
ide binaries. For binaries formed within many different clusters, 

he o v erall distribution of semimajor ax es would be the combination
f various a −3 / 2 

0 power laws, each having breaks at different scales.
his results in a distribution of binary semimajor axes that behaves as
 

−3 / 2 
0 for small a 0 and eventually breaks to a more rapidly decreasing
istribution at large a 0 in a way that depends on properties of
he cluster population. Approximating the large- a 0 distribution as 
 power law, this implies the index λ2 at large a 0 is strictly less than
he index at small a 0 , λ1 . 

Our results requiring that λ2 < λ1 are shown in Figs A1 –A2 .
n this case, the constraints are nearly identical to those set using
he single power law assumption for the initial semimajor axis 
istribution. Thus, our constraints are robust under the assumption 
hat the initial distribution of wide binaries is decreasing, with the
umber of binaries at high separations decreasing as fast as or faster
han that at low separations. 
MNRAS 525, 5813–5830 (2023) 
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M

Figure A1. Sampled posterior distributions of the model parameters { λ1 , λ2 , a b , � , λc , f p } for uniform-density perturbers with ( M p , R p ) = (10 3 M �, 0.1 pc) 
and binaries whose initial semimajor axis distribution obeys the smoothly broken power law given by equation ( A1 ). The orange and blue lines are the result of 
marginalizing o v er power-la w indices satisfying λ1 , λ2 < 0 and λ2 < λ1 < 0, respectively. The inner and outer boundaries of the 2D contours denote 68 per cent 
and 95 per cent error contours. 
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Figure A2. Limits on populations of uniform-density perturbers with differ- 
ent masses M p and R p = 0 . 1 pc for models in which binaries have an initial 
semimajor axis distribution given either by a single power law, a smoothly 
broken power law satisfying λ1 , λ2 < 0, or a smoothly broken power law 

satisfying λ2 < λ1 < 0. 
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Figure B2. Sampled posterior distribution of the model parameters { λ, 
f p } for uniform-density perturbers with ( M p , R p ) = (10 3 M �, 0.1 pc) and 
no chance-alignment model ( φc = 0). The vertical dashed lines in the 1D 

histograms denote 5 per cent, 50 per cent, and 95 per cent quantiles. The inner 
and outer boundaries of the 2D contours denote 68 per cent and 95 per cent 
error contours. 
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PPENDIX  B:  C H A N C E - A L I G N M E N T  

O D E L L I N G  

e have set constraints on subhaloes assuming that the distribution 
f chance alignments (subject to the various quality cuts used to 
onstruct the catalogue) follows a power law as a function of
rojected separation s . In this Appendix, we show that our results
gree with constraints that are set assuming two other functional 
orms for the chance-alignment separation distribution. 

First, we set constraints without taking the population of chance 
lignments into account. This corresponds to setting the chance- 
igure B1. Limits on populations of uniform-density perturbers with differ- 
nt masses M p and R p = 0 . 1 pc for models in which the projected separation 
istribution of chance alignments is either a single power law, identically 
ero, or a Gaussian. 

Figure B3. Sampled posterior distribution of the model parameters { λ, μc , 
σ c , f p } for uniform-density perturbers with ( M p , R p ) = (10 3 M �, 0.1 pc) and 
a chance-alignment separation distribution given by a Gaussian, see equation 
( B1 ). The vertical dashed lines in the 1D histograms denote 5 per cent, 
50 per cent, and 95 per cent quantiles. The inner and outer boundaries of 
the 2D contours denote 68 per cent and 95 per cent error contours. 
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lignment distribution φc = 0 in equation ( 22 ). As we see from
ig. B1 , minimizing the effect of chance alignments in this way does
ot significantly alter our constraints. The posterior corresponding 
o 0.1 pc uniform-density perturbers with M p = 10 3 M � is given in
ig. B2 . 
MNRAS 525, 5813–5830 (2023) 
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Next, we consider a Gaussian chance-alignment distribution: 

c ( s) = 

1 √ 

2 πσ 2 
c 

exp 

[ 

−1 

2 

(
s − μc 

σc 

)2 
] 

, (B1) 

here μc and σ c denote the mean and standard deviation, respec-
ively. The corresponding limits are given in Fig. B1 ; they are
NRAS 525, 5813–5830 (2023) 
onsistent with limits from the default single power law and as well
s the no-chance-alignment limits. The posterior corresponding to
.1 pc uniform-density perturbers with M p = 10 3 M � is given in
ig. B3 . 
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